Диффузия из одной полуограниченной области в другую

Рассмотрим случай, когда D считается величиной постоянной. Из уравнения (3.6) можно найти функцию , т.е. распределение концентрации в любой момент времени. Для этого нужно задаться двумя граничными условиями.

Пусть координата х=0 соответствует той плоскости пластины, через которую вводится примесь. Тогда координата противоположной (тыльной) плоскости равна толщине пластины d. На практике глубина диффузионных слоев всегда меньше толщины пластины, поэтому можно положить . С математической точки зрения удобнее считать пластину бесконечно толстой и в качестве 1-го граничного условия принять

(3.7)

2-е граничное условие имеет два варианта, которые соответствуют двум разновидностям реальных технологических процессов.

1. Случай неограниченного источника примеси. В этом случае диффузант непрерывно поступает к пластине, так что в ее приповерхностном слое концентрация примеси поддерживается постоянной.

Граничное условие для этого варианта имеет вид:

(3.8)

где (см-3) – поверхностная (точнее – приповерхностная) концентрация. Обычно количество поступающего диффузанта обеспечивает режим предельной растворимости, т. е. .

2. Случай ограниченного источника примеси. В этом случае сначала в тонкий приповерхностный слой пластины вводят некоторое количество атомов диффузанта, а потом источник диффузанта отключают и атомы примеси перераспределяются по глубине пластины при неизменном их общем количестве. Первую стадию процесса называют «загонкой», вторую – разгонкой примеси.

Для этого варианта можно записать условие в виде

, (3.9)

где Q – количество атомов примеси на единицу площади (задается на этапе «загонки»).

Решая уравнение (3.6) при граничных условиях (3.7) и (3.8), получаем распределение концентрации при неограниченном источнике (рис. 3.2, а), получим:

Рис. 3.2. Распределение примеси при диффузии из неограниченного (а) в ограниченного (б) источников для разных моментов времени

, (3.10а)

где erfс (z) [1] – дополнительная функция ошибок, близкая к экспоненциальной функции .

Решая уравнение (3.7) при условиях (3.8) и (3.10), получаем распределение концентрации при ограниченном источнике (рис. 3.2, б):

. (3.10б)

В данном случае распределение описывается функцией Гаусса, которая характерна нулевой начальной производной, наличием точки перегиба и почти экспоненциальным «хвостом» после этой точки.

Под глубиной диффузионного слоя (глубиной диффузии) понимают координату х=LN при которой концентрация введенной примеси N равна концентрации исходной примеси N0 (рис. 3.2). Величину LN нетрудно найти из выражений (3.10), полагая в левой части N = N0.

Аппроксимируя функцию (3.10а) экспонентой, получаем для неограниченного источника

; (3.11)

где - характеристическая длина диффузии.

Логарифмируя обе частей (3.11б), получаем для ограниченного источника

. (3.12)

Оба выражения имеют одинаковую структуру и позволяют сделать два важных общих вывода:

· время проведения диффузии пропорционально квадрату желательной глубины диффузии; поэтому получение глубоких диффузионных слоев требует большого времени; в ИС глубина рабочих диффузионных слоев обычно лежит в пределах 1-4 мкм;

· при заданной глубине диффузионного слоя изменения коэффициента диффузии эквивалентны изменениям времени процесса.

С учетом характеристической длины диффузии уравнения (3.10) можно привести к виду:

, (3.13а)

, (3.13б)

где .

Глубина, на которой концентрация диффундирующей примеси равняется концентрации исходной примеси в подложке, называется металлургическим переходом xj. Для xj можно записать , где – концентрация исходной примеси в подложке. Предполагая, что подложка легирована примесью противоположного диффузанту типа проводимости и используя для отображения концентрации логарифмическую шкалу, можно определить результирующую концентрацию легирующих элементов вблизи pn -перехода.

При формировании скрытого и эмиттерного диффузионных слоев, областей стока и истока требуется достижение максимальной концентрации, в то время как в базовом слое или в области кармана комплементарного МДП-транзистора концентрация примеси должна быть существенно ниже предела ее растворимости. В первом из этих двух случаев проводится одностадийная диффузия, во втором – двухстадийная. Одностадийная диффузия так же, как и первая стадия двухстадийной диффузии осуществляется из неограниченного (неистощимого, бесконечного) источника примеси, наносимого на полупроводник заранее или в процессе диффузии и обеспечивающего постоянную высокую концентрацию примеси на границе раздела источник – полупроводник.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: