Коммутаторы локальных сетей

Технология коммутации сегментов Ethernet была предложена фирмой Kalpana в 1990 году в ответ на растущие потребности в повышении пропускной способности связей высокопроизводительных серверов с сегментами рабочих станций.

Структурная схема коммутатора EtherSwitch, предложенного фирмой Kalpana, представлена на рис.2.18.

Рис. 2.18.Структура коммутатора EtherSwitch компании Kalpona

Каждый из 8 портов 10Base-T обслуживается одним процессором пакетов Ether­net — ЕРР (Ethernet Packet Processor). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров ЕРР. Системный модуль ведет общую адресную таблицу коммутатора и обеспечивает управление коммута­тором по протоколу SNMP. Для передачи кадров между портами используется коммутационная матрица, подобная тем, которые работают в телефонных комму­таторах или мультипроцессорных компьютерах, соединяя несколько процессоров с несколькими модулями памяти.

Коммутационная матрица работает по принципу коммутации каналов. Для 8 пор­тов матрица может обеспечить 8 одновременных внутренних каналов при полу­дуплексном режиме работы портов и 16 - при полнодуплексном, когда передатчик и приемник каждого порта работают независимо друг от друга.

При поступлении кадра в какой-либо порт процессор ЕРР буферизует несколь­ко первых байт кадра, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же принимает решение о передаче пакета, не дожида­ясь прихода остальных байт кадра. Для этого он просматривает свой собственный кэш адресной таблицы, а если не находит там нужного адреса, обращается к сис­темному модулю, который работает в многозадачном режиме, параллельно обслу­живая запросы всех процессоров ЕРР. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую тот буферизует в своем кэше для последующего использования.

После нахождения адреса назначения процессор ЕРР знает, что нужно дальше делать с поступающим кадром (во время просмотра адресной таблицы процессор продолжал буферизацию поступающих в порт байтов кадра). Если кадр нужно отфильтровать, процессор просто прекращает записывать в буфер байты кадра, очищает буфер и ждет поступления нового кадра.

Если же кадр нужно передать на другой.порт, то процессор обращается к ком­мутационной матрице и пытается установить в ней путь, связывающий его порт с портом, через который идет маршрут к адресу назначения. Коммутационная мат­рица может это сделать только в том случае, когда порт адреса назначения в этот момент свободен, то есть не соединен с другим портом.

Если же порт занят, то, как и в любом устройстве с коммутацией каналов, мат­рица в соединении отказывает. В этом случае кадр полностью буферизуется про­цессором входного порта, после чего процессор ожидает освобождения выходного порта и образования коммутационной матрицей нужного пути.

После того как нужный путь установлен, в него направляются буферизованные байты кадра, которые принимаются процессором выходного порта. Как только процессор выходного порта получает доступ к подключенному к нему сегменту Ethernet по алгоритму CSMA/CD, байты кадра сразу же начинают передаваться в сеть. Процессор входного порта постоянно хранит несколько байт принимаемого кадра в своем буфере, что позволяет ему независимо и асинхронно принимать и передавать байты кадра.

При свободном в момент приема кадра состоянии выходного порта задержка между приемом первого байта кадра коммутатором и появлением этого же байта на выходе порта адреса назначения составляла у коммутатора компании Kalpana всего 40 мкс, что было гораздо меньше задержки кадра при его передаче мостом.

Описанный способ передачи кадра без его полной буферизации получил назва­ние коммутации «на лету» («on-the-fly») или «напролет» («cut-through»). Этот способ представляет, по сути, конвейерную обработку кадра, когда частично со­вмещаются во времени несколько этапов его передачи.

1. Прием первых байт кадра процессором входного порта, включая прием байт адреса назначения.

2. Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).

3. Коммутация матрицы.

4. Прием остальных байт кадра процессором входного порта.

5. Прием байт кадра (включая первые) процессором выходного порта через ком­мутационную матрицу.

6. Получение доступа к среде процессором выходного порта.

7. Передача байт кадра процессором выходного порта в сеть.

Этапы 2 и 3 совместить во времени нельзя, так как без знания номера выходно­го порта операция коммутации матрицы не имеет смысла.

Однако главной причиной повышения производительности сети при использо­вании коммутатора является параллельная обработка нескольких кадров.

Этот эффект иллюстрирует рис.2.19. На рисунке изображена идеальная в отно­шении повышения производительности ситуация, когда четыре порта из восьми передают данные с максимальной для протокола Ethernet скоростью 10 Мб/с, при­чем они передают эти данные на остальные четыре порта коммутатора не конфлик­туя — потоки данных между узлами сети распределились так, что для каждого принимающего кадры порта есть свой выходной порт. Если коммутатор успевает обрабатывать входной трафик даже при максимальной интенсивности поступления кадров на входные порты, то общая производительность коммутатора в приведен­ном примере составит 4x10 = 40 Мбит/с, а" при обобщении примера для N портов — (N/2)xl0 Мбит/с.

Рис.2.19.Параллельная передача кадров коммутатором

Широкому применению коммутаторов, безусловно, способствовало то обстоя­тельство, что внедрение технологии коммутации не требовало замены установлен­ного в сетях оборудования — сетевых адаптеров, концентраторов, кабельной системы.

Так как коммутаторы и мосты прозрачны для протоколов сетевого уровня, то их появление в сети не оказало никакого влияния на маршрутизаторы сети, если они там имелись.

Конструктивное исполнение коммутаторов

В конструктивном отношении коммутаторы делятся на следующие типы:

Ø автономные коммутаторы с фиксированным количеством портов;

Ø модульные коммутаторы на основе шасси;

Ø коммутаторы с фиксированным количеством портов, собираемые в стек.

Первый тип коммутаторов обычно предназначен для организации небольших рабочих групп.

Модульные коммутаторы на основе шасси чаще всего предназначены для применения на магистрали сети. Поэтому они выполняются на основе какой-либо комбинированной схемы, в которой взаимодействие модулей организуется по быстродействующей шине или же на основе быстрой разделяемой памяти большого объема. Модули такого коммутатора выполняются на основе технологии «hot swap», то есть опускают замену на ходу, без выключения коммутатора, так как центральное коммуникационное устройство сети не должно иметь перерывов в работе. Шасси обычно снабжается резервированными источниками, питания и резервированными вентиляторами в тех же целях.

С технической точки зрения определенный интерес представляют стековые коммутаторы. Эти устройства представляют собой коммутаторы, которые могут работатъ автономно, так как выполнены в отдельном корпусе, но имеют специальные интерфейсы, которые позволяют их объединять в общую систему, работающую как единый коммутатор. Говорят, что в этом случае отдельные коммутаторы образуют стек. Структура стека коммутаторов, соединяемых по скоростным специальным пор­там, показана на рис.2.20.

Рис.2.20.Стек коммутаторов, объединяемых по высокоскоростным каналам


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: