Центральный момент s-го порядка

Для дискретной случайной величины .

Для непрерывной случайной величины .

Дисперсией называется второй центральный момент случайной величины.

По свойствам математического ожидания получим . Эта формула часто применяется. Дисперсия – это характеристика рассеяния, она характеризует концентрацию кривой распределения (графика плотности распределения) около математического ожидания. Если на числовой оси расположить точки xi с массами pi, то дисперсия – это момент инерции системы материальных точек относительно центра тяжести mx.

Для дискретных случайных величин .

Для непрерывных случайных величин .




double arrow
Сейчас читают про: