double arrow

Модели внутривидовой конкуренции

Основные модели классической экологии.

Рассмотрим простейшую из указанных моделей для вида с дискретными периодами размножения, в которой численность популяции в момент времени t равна Nt и изменяется во времени пропорционально величине основной скорости воспроизводства R. К таким видам относятся, например, большая часть растений, некоторые виды насекомых, у которых разные поколения четко разнесены во времени. Коэффициент R характеризует количество особей, которое воспроизводится в расчете на одну существующую. Данная модель может быть выражена уравнением геометрической прогрессии

Nt+1= Nt * R; (1)

решение, которого имеет вид:

Nt=N0*Rt; (2)

гдe N0 - начальная численность популяции. Эта модель, однако, oписывает популяцию, в которой отсутствует конкуренция и в которой R является константой. Если R>1, то численность популяции будет бесконечно увеличиваться. В реальности работают механизмы сдерживания роста популяции. В литературе приводится немало интересных примеров быстрого роста численности популяций, если бы для их размножения существовали идеальные условия. Особенно это относится к насекомым, растениям и микроорганизмам, которые могли бы покрыть земной шар толстым слоем, если им создать благоприятные условия для размножения. Но в действительности такого роста популяций, когда их численность увеличивается в геометрической прогрессии, на сколько-нибудь длительных промежутках времени не наблюдается.

Следовательно, в первую очередь необходимо изменить уравнение (1) таким образом, чтобы чистая скорость воспроизводства зависела oт внутривидовой конкуренции.

Конкуренцию можно определить как использование некоего ресурса (пиши, воды, света, пространства) каким-либо организмом, который тем самым уменьшает доступность этого ресурса для других организмов. Если конкурирующие организмы, принадлежат к одному виду, то взаимоотношения между ними называют внутривидовой конкуренцией, если же они относятся к разным видам, то отношения называют межвидовой конкуренцией.

Рис. 1. К вопросу oб ограничении скорости роста популяции.

Изменим уравнение (1)в зависимости от внутривидовой конкуренции. На рис.1. показана возможная простейшая зависимость скорости воспроизводства от численности популяции Nt. Точка А отражает ситуацию, в которой численность популяции близка к нулю, конкуренция при этом практически отсутствует, и фактическую скорость воспроизводства вполне можно описывать параметром R в его первоначальном виде. Следовательно, при низкой плотности популяции уравнение (1) вполне справедливо. В преобразованном виде оно выглядит так:

 
 


(3)

Точка В,напротив, отражает ситуацию, в которой численность популяции высока, и в значительной степени проявляется внутривидовая конкуренция. Фактическая скорость воспроизводства в результате конкуренции настолько снижена, что популяция в целом может не более чем восстанавливать в каждом поколении свою численность, потому что количество родившихся особей уравновешивается количеством погибших. Этой гипотезе, отраженной на рис.1, соответствует уравнение:

(4)

 
 


где

Это уравнение является моделью роста популяции, ограниченного внутривидовой конкуренцией. Суть этой модели в том, что константа R в уравнении (1) заменена на фактическую скорость воспроизводства, т.е. R / (1 + a Nt) которая уменьшается по мере роста численности популяции Nt. Достоинство полученного уравнения заключается в его простоте. Такой тип конкуренции приводит к саморегуляции численности популяции, изображенной на рис. 2 (для некоторого набора параметров модели; численное решение).

Рис. 2. Изменение численности популяции согласно уравнению (4) при R=2, К=200, N0=20

Далее может быть получена гораздо более общая модель, учитывающая интенсивность конкуренции. Простейшая из возможных зависимостей падения скорости роста популяции от ее численности, изображенная на рис.1, является не законом природы, а всего лишь удобной гипотезой. Далеко не всегда реальная динамика численности популяции, определяемая внутривидовой конкуренцией, даже качественно согласуется с изображенной на рис.2. Более общая гипотеза о законе падения скорости роста популяции в зависимости oт ее численности приводит к следующему уравнению:

 
 


(5)

В отличие от уравнения (4) модель (5) более общая, т. к. в нее введен параметр b, который определяет тип зависимости падения скорости роста популяции от ее численности.

Набор величин α, b, R можно использовать для сравнения и противопоставления сильно различающихся ситуаций. Другим положительным качеством уравнения (5) является его способность освещать новые стороны реального мира. Путем анализа кривых динамики популяций, полученных с помощью уравнения, можно прийти к предварительным выводам относительно динамики природных популяций.

На рис. 3, а, б, построенных с помощью численного моделирования, показаны различные варианты динамики численности популяции, полученные с помощью уравнения (5) при разном сочетании параметров b и R.

Рис.3, а. Монотонное установление стационарной численности

популяции при b = 1.4, R = 2

Рис.3, б. Колебательное установление стационарной численности популяции при b=3.9, R=2.

Исследования модели (5) приводят к построению на фазовой плоскости (b, R) границ, которые разделяют монотонное затухание, затухающие колебания, устойчивые предельные циклы и случайные (хаотические) изменения (Рис.4). Для этого надо задаться значениями α и N0 и производить расчеты, изменяя параметры b, R. Различить каждый из возможных режимов можно попытаться визуально, выполняя построение на экране компьютера графиков изменения численности популяции и запоминая соответствующие значения параметров b, R при переходе от одного режима к другому. Следует, однако, понимать, что установление различий между квазипериодическими, апериодическими и хаотическими движениями – сложная математическая задача. Для ее решения используются методы преобразований Фурье и другие, рассмотрение которых выходит за пределы данного курса.

Рис.4. Схематическое изображение фазовой диаграммы динамики численности популяции с дискретным размножением.

§2. Динамика численности популяций с непрерывным размножением.Логистическое уравнение

До сих пор мы рассматривали модели, применимые к популяциям с дискретными периодами размножения. Но в природе встречаются и популяции, где рождение и гибель организмов происходит непрерывно; для таких популяций модели, выраженные предыдущими уравнениями непригодны.

Рассмотрим популяцию с непрерывным размножением и построим модель изменения ее численности N. Математическим аппаратом здесь являются дифференциальные уравнения. Скорость роста численности в этом случае можно обозначить ,тогда средняя скорость увеличения численности в расчете на одну особь определяется величиной.


Без учета внутривидовой конкуренции получаем

 
 


или

 
 


(1)

Через r обозначено приращение численности за единицу времени в пересчете на одну особь. Понятно, что численность популяции при r > 0 будет неограниченно возрастать, т.е. будет наблюдаться экспоненциальный рост.

Теперь попробуем учесть внутривидовую конкуренцию. Для этого воспользуемся методом, который однажды уже применяли (см. рис. 1).

Обратимся к рис. 5. Когда численность популяции близка к нулю, скорость роста определяется величиной r, так как конкуренция еще не оказывает влияния на прирост популяции (точка А). Когда же при возрастании N достигается значение К (предельной плотности насыщения), скорость роста популяции снижается до нуля (точка В).

 
 


Рис.5. Зависимость скорости воспроизводства от численности популяции.

Записав уравнение прямой АВ, получим

 
 


(2)

Последнее уравнение известно под названием «логистического». Одно из его достоинств – простота. Уравнение относится к ОДУ и допускает аналитическое решение:


 
 


(3)

В истории экологии логистическое уравнение сыграло значительную роль, оказав большое влияние на применение в экологии математических методов. С другой стороны, простота уравнения накладывает ограничения на область его применения, так как с его помощью можно описать немногие реальные популяции. Но, несмотря на все ограничения, логистическое уравнение используется как составная часть в других моделях динамики численности популяций, рассматриваемых ниже.

Изменение численности популяции в соответствии с формулами (2)–(3) иллюстрирует рис.6.

 
 


Рис. 6. Динамика численности популяции при N0 = 25, К = 200, r = 3.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: