В Эфиопии биогазовая установка

Не отбрасывая значение крупнообъемных установок, стоит обратить пристальное внимание на преимущества малых биогазовых установок. Они дешевые, доступные для строительства индивидуальным и промышленным способами, простые и безопасные в обслуживании, а продукты переработки в них органических отходов — биогаз и высококачественные органические удобрения — можно использовать непосредственно на потребности фермерского хозяйства без расходов на их транспортировку.

К преимуществам малых биогазовых установок следует отнести доступность местных материалов для сооружения установки, возможность обслуживания силами владельца, отсутствие потребности в учете, транспортировке на далекие расстояния и подготовке к использованию биогаза.

Небольшие биогазовые установки имеют и определенные недостатки, сравнительно с большими. Здесь тяжелее автоматизировать и механизировать процессы подготовки субстрату и работу самих установок, проблематичным является измельчение субстрату, его подогрев, загрузка и разгрузка, хранение до и после обработки, которая предопределяет потребность в емкостях для складирования ферментированных отходов. Кроме того, чтобы довести субстрат до необходимой для ферментации концентрации, следует иметь еще одну емкость и определенное количество воды. Для уменьшения затрат воды стоит предусмотреть возможность ее повторного использования. Возникают проблемы и с обезвоживанием ферментированной массы. Чаще всего узлы, которые используются для механизации работ (измельчение, смешивание, подогрел, подача продуктов переработки и тому подобное) на больших установках, непригодны к применению на малых из-за своих технических параметров и высокой стоимости.

Приусадебные установки производят небольшие объемы биогаза, потому более сложно организовать процессы его обезвоживания и очистки от примесей негорючих составляющих.

К проблемам эксплуатации малых биогазовых установок следует отнести неравномерность процесса получения биогаза в разные времена года. В летний период эксплуатации проблемы возникают из-за того, что на подогрев субстрата при наличии газового нагревателя будет тратиться меньше биогаза собственного производства, его товарное количество будет большим чем в зимний период. Летом, когда животных выгоняют на пастбище, уменьшается и количество отходов — сырья для работы биореактора. В составе таких установок нецелесообразно предусматривать узлы для значительного накопления биогаза - когда газа будет производиться больше чем нужно для хозяйства, его придется просто выпускать в атмосферу.

Но невзирая ни на что, анаэробная переработка органических отходов - высокоэффективный и выгодный способ получения качественных органических удобрений и экологически чистого энергоносителя. Малые приусадебные биогазово-гумусные установки с реактором до 20 м3 можно рекомендовать к установке практически на каждом сельском дворе, где накапливаются органические отходы.

Среди основных современных тенденций развития биогазовых технологий можно выделить такие:

• сбраживание поликомпонентных субстратов;

• применение "сухого" типа анаэробной ферментации для производства биогаза из энергетических растительных культур;

• создание централизованных биогазовых станций большой производительности и тому подобное.

Существуют четыре основных типа реализации технологии анаэробного сбраживания, а именно: крытые лагуны и метантанки, работающие в режиме реактора-смесителя и реактора с носителем биомассы. Техническая и экономическая целесообразность применения того или иного типа зависит, главным образом, от влажности субстратов и климатических условий в районе расположения биогазовой установки. Тип примененного биореактора отражается на общей длительности процесса метанизации.

Крытые лагуны целесообразно применять в условиях теплого и умеренного климата - для жидких навозных стоков, которые не содержат включений со значительной гидравлической крупностью. Такие реакторы специально не обогреваются, а потому их считают не интенсивными. Длительность распада органического вещества к стабилизации отходов значительно превышает аналогичную в реакторах с интенсивным режимом сбраживания.

К реакторам с интенсивным режимом сбраживания относят обогревающиеся реакторы разных типов. Существуют два принципиальных отличия между конструкциями таких реакторов, которые зависят от характеристики сбраживаемых субстратов. В реакторах первого типа сбраживают преимущественно субстраты с доминированием жидких навозных отходов. Самый распространенный тип таких реакторов - цилиндрические бетонные или стальные с центральной колонной, перекрытые эластичной мембраной, которая служит для герметизации сооружения и накопления образуемого биогаза. Такие реакторы работают по принципу полного смешивания, когда каждая свежая порция смеси исходных субстратов смешивается со всей сбраживаемой массой реактора. Принципиальная конструкция таких реакторов отображена на рисунке 43.

Рис.43. Вертикальный тип метантанка

1 - крыша;

2 - перелив субстрата;

3 - помпа подачи воздуха;

4 - теплоизоляция метантанка;

5 - центральная колонна, которая поддерживает мембрану газгольдера от падения;

6 - перемешивающее устройство;

7 - привод перемешивающего прибора;

8 - площадка обслуживания;

9 - мембрана газгольдера;

10 - уровень наполнения метантанка;

11 - высота поднятия мембраны газгольдера;

12 - подогревательные трубопроводы

Другой тип реакторов для жидких субстратов - горизонтального типа, работающие по принципу вытеснения. В таких сооружениях исходная смесь субстрата подается с одной стороны, а отводится из другого. При этом органическое вещество испытывает последовательные превращения за счет консорциума микроорганизмов, уже имеющихся в исходном субстрате. Такие реакторы можно считать менее эффективными по интенсивности процесса, однако в них, за счет разнесения в пространстве точек входа свежих субстратов и выхода сброженных, удается минимизировать риск выхода вместе со сброженным субстратом (который удаляется из метантанка) несброженной порции свежих субстратов. Реакторы такого типа целесообразно применять для небольших объемов сбраживаемых субстратов.

Реакторы следующего типа предназначены для метанизации сухих органических смесей, в которых преобладают косубстраты из энергетических растительных культур. Реакторы такого типа приобретают распространения вместе с распространением технологий "сухой" ферментации энергетических культур растений. Характерной особенностью таких метантанков является то, что их проектируют как реакторы полного вытеснения.

Из технологических позиций процесс получения биогаза из органического вещества является многостадийным. Он состоит из процесса подготовки субстратов к сбраживанию, процесса биологического разложения вещества, дображивания (по желанию), обработки сброженного субстрата и добытого биогаза, подготовки их к использованию или утилизации на месте. На рисунке 2 приведена принципиальная технологическая схема типичной фермерской биогазовой станции для совместного сбраживания навозных отходов и органических косубстратов.

Рис. 44. Принципиальная технологическая схема типичной фермерской биогазовой станции

Подготовка субстрата к сбраживанию предусматривает сбор и гомогенизацию (перемешивание) субстрата. Для сбора субстрата, в зависимости от его проектного количества, строят накопительную емкость, обустроенную специальным перемешивающим устройством и помпой, которая в дальнейшем будет подавать подготовленный субстрат к реактору (метантанку). В зависимости от типов субстратов, система подготовки вещества может быть усложнена модулями измельчения или стерилизации косубстратов (при необходимости).

После предварительной подготовки предварительно рассчитанное количество субстрата перекачивают с помощью насосов системой трубопроводов к реактору. В реакторе (метантанке) субстрат поддается деструкции при участии микробиоценоза на протяжении расчетного времени, в зависимости от избранного температурного режима. Метантанк оборудуют системой подогревательных трубопроводов, перемешивающим устройством (для устранения возможности расслоения среды и возникновения корки, равномерного деления питательных для микробиологической среды веществ и выравнивания температуры субстрата), системами отвода добытого биогаза и отвода сброженного субстрата. Кроме того, метантанк оборудуют системой подачи воздуха, небольшое количество которого нужно для очистки биогаза от сероводорода биохимическим осаждением.

Степень распада органического вещества на момент завершения активного газообразования приближается до 70-80%. В этом состоянии сброженная органическая масса может подаваться на систему сепарации для деления на твердую и жидкую части в специальном сепараторе.

Для утилизации добытого биогаза существует несколько схем, основным из которых является сжигание биогаза в когенерационной установке непосредственно на объекте, с добычей электроэнергии и теплоты, которые используются на собственные потребности фермы и биогазовой станции. Кроме того, часть электрической энергии передается в электросети.

Основным субстратом при анаэробном сбраживании, как правило, является навоз животных и птицы, а также отходы убойных цехов. Субстраты такого происхождения содержат больше всего микроорганизмов, необходимых для организации и хода процесса метанового брожения, поскольку они присутствуют уже в желудке животных.

Как свидетельствует опыт Германии, большинство установок работают на смеси косубстратов с разным их дольным соотношением. В стране реализовали специальную программу сбора данных из более чем 60 показательных работающих биогазовых станций и проанализировали их. Существуют достаточно много станций (около 45%), где в качестве основного субстрата используют навоз объеме 75-100% от общего объема смеси. Вместе с тем есть также много станций, где содержание навозных стоков менее 50%. Это указывает на то, что биогазовые установки в Германии при производстве биогаза в значительной мере используют потенциал не только навозных отходов, но и разнообразных дополнительных косубстратов.

Анализ данных о производстве биогаза на этих станциях показал, что с увеличением частицы косубстратов в смеси увеличивается удельный выход метана. Самым распространенным среди косубстратов разных типов является силос кукурузы. Его закупают у фермеров в измельченном виде, готовом к загрузке в реакторы, и складируют на открытых огражденных площадках. Кроме силоса кукурузы, достаточно широко используют и травяной силос, полову зерновых, жировые отходы, скошенную траву, молочную сыворотку, пищевые и овощные отходы и тому подобное.

В сознании украинского фермера биогазовая установка крепко связана исключительно с переработкой отходов больших ферм. Главным стимулом для строительства БГУ в Украине, чаще всего не слишком эффективным, остается необходимость очистки сточных вод. Интересной для фермера является и возможность получения высококачественных органических удобрений. Энергетические аспекты получения биогаза остаются недоиспользованными из-за низких тарифов на электрическую и тепловую энергию, в результате чего окупаемость БГУ за счет продажи энергии оказывается очень низкой.

Конечно, для того, чтобы биогазовые технологии начали активно развиваться, нужно узаконить систему "зеленых" тарифов на все виды возобновляемой электрической и тепловой энергии, как это уже состоялось во многих странах мира, и не только в развитых.

Другой путь повышения эффективности биогазовых установок заключается в активном использовании для сбраживания дополнительных субстратов, например силоса кукурузы. Прекрасным примером эффективной биогазовой установки является БГУ немецкой компании Енвитек Биогаз. Стандартная БГУ компании комплектуется реактором 2500 м3 и когенерационной установкой электрической мощностью 500 кВт. Базовым поставщиком сырья для такой установки может быть обычная для Германии свиноферма с поголовьем 5000 свиней. Повышение выхода биогаза достигается за счет добавления силоса кукурузы. Для непрерывной работы установки на протяжении года нужно 6000 тонн силоса, или 300 гектаров земли при урожайности силоса 20 т/га.

Краткая техническая характеристика биогазовых компании ООО Биодизельднепр"  
Марка установки Объем реактора, м3 Установленная мощность КВт Суточная загрузка, т/м3 Выход биогаза М3/сут. Производство электроэнергии, кВт Производство тепла, кВт Биобензин Л/сут.
БГУ-6 1-6 3-5 0,2-1,2 3-8 6-36 6-36  
БГУ-20 6-20 5-7 1,2-4 18-60 36-120 36-120  
БГУ-50 20-50 7-10 4-ю 60- 150 120-300 120-300  
БГУ-200 5-200 10-30 10-40 150-600 300-1200 300- 200  

Жидкие стоки - обеззараженная дезодорирована жидкость, которая содержит до 1 % зависших веществ и имеет в составе удобряющие элементы. Фугат - прекрасная органическая подпитка для сельскохозяйственных культур, использование которой удобно как при поливе, так и при орошении. После доочистки жидкие стоки можно использовать даже как техническую воду.

Биогаз используется для производства электрической и тепловой энергии. Сжигая 1 м3 биогаза, можно получить 2,5-3 кВт/час электроэнергии и 4-5 кВт тепловой энергии. При этом 40-60 % биогаза используется на технологические потребности установки. Биогаз под давлением 200-220 атм. можно использовать для заправки автотранспорта.

Кроме производства энергии и удобрений при сбраживании отходов, биогазовые установки исполняют роль очистных сооружений - уменьшают химическое и бактериологическое загрязнение почвы, воды, воздуха и переделывают органические отходы в нейтральные минерализованные продукты. Сравнительно с энергией малых рек, ветровой и солнечной энергией, где установки используют экологически чистые источники энергии (пассивно чистые установки), биоэнергетические установки (БЭУ) являются активно чистыми, что устраняет экологическую опасность продуктов, которые являются для них сырьем.

В мире используются много типов биогазовых установок. Они содержат устройства для приема навоза растительной массы, метатанки и энергосиловые блоки.

Отличаются между собой метантанки конструкцией устройств для перемешивания массы во время сбраживания. Самое частое перемешивание осуществляют с помощью вала с лопастями, который обеспечивает послойное перемешивание сбраживаемой массы. Кроме того, перемешивают гидравлическими и механическими устройствами, которые обеспечивают забор массы из нижних слоев метантенка и подачу в верхнюю часть. Биогазовые установки, которые работают в интенсивном режиме, имеют камеры аэробного (кислородного) брожения, где происходит подготовка массы к сбраживанию, и анаэробному (метанового) брожению. Есть также устройства для перемешивания массы, выполненные в виде вала с лопатками, размещенного по вертикальной оси корпуса и прикрепленного к верхней части плавающего газового колпака. Перемешивание массы в реакторе происходит за счет вращения вала с лопатками и перемещения плавающего перекрытия. Некоторые устройства обеспечивают лишь разбивание корки, которая образуется на поверхности массы обрабатываемой детали. Перемешивания достигают также путем использования перегородок и сифона двустороннего действия, которое обеспечивает попеременное переливание массы из нижней зоны одной секции в верхнюю второй и, наоборот, за счет регуляции давления газа. Иногда метантанки выполняет в виде сферы или цилиндра, которые должны возможность вращаться вокруг своей геометрической оси.

В Украине в связи с резким подорожанием природного газа, исчерпаемости его ресурсов усилился интерес к биогазовым технологиям. На сегодня в усадьбах и небольших фермерских хозяйствах страны еще не используют небольшие биогазовые установки. В то же время, например, в Китае и Индии построены и успешно эксплуатируются миллионы мелких метантанков. В Германии из 3711 действующих биогазовых установок около 400 составляют фермерские биогазовые установки, в Австрии их более 100.

Рис.45. Немецкая биогазовая установка (фермерская)

Рис.46 Схема биогазовой установки для фермерского хозяйства :

1 - сборники для гноя (схематически); 2 - система загрузки биомассы; 3- реактор 4 реактор досбраживания; 5 - субстратор; 6 - система отопления; 7 - силовая установка; 8 - система автоматики и контроля; 9 - система газопроводов.

Рис.47 Схема биогазовой установки для фермерского хозяйства

По показаниям ветеранов Великой Отечественной войны, во время освобождения Румынии они видели на многих крестьянских дворах небольшие примитивные биогазовые установки, которые производили биогаз, используемый для бытовых потребностей.

Какие биогазовые установки можно рекомендовать для использования в сельских усадьбах и небольших фермерских хозяйствах нашей страны.

Из небольших биогазовых установок следует назвать установки, разработанные компанией ООО "Биодизельднепр" (г. Днепропетровск). Они предназначены для переработки путем анаэробного сбраживания (без доступа кислорода) органических отходов приусадебных и фермерских хозяйств. Такие установки позволяют перерабатывать ежесуточно 200-4000 кг отходов в непрерывном режиме или 1000-20000 кг- циклический, на протяжении пяти суток. При этом, обеспечивается получение не менее 3м3 биогаза на 1 м3 объема реактора, который может быть использован в установках для получения тепла или электроэнергии, необходимой для покрытия энергетических потребностей установки; для систем газообеспечения (освещение помещений, приготовления еды), отопления и горячего водообеспечения хозяйства; в установках синтеза биоэтанола и биодизельного топлива, а также соответствующего количества высококачественного органического удобрения, готового для внесения в почву.

Производственно-коммерческая фирма "Днепр-Десна» (г. Днепропетровск) разработала малую биоэнергетическую установку "Биогаз-6МГС 2", предназначенную для частного хозяйства (3-4 коровы, 10-12 голов свиней, 20-30 голов птицы). Производительность этой установки составляет приблизительно 11 м3 биогаза за сутки. Такое количество газа покрывает потребности в отоплении помещения площадью 100 м2 и горячей воде для семьи из пяти человек.

Заслуживает на внимание опыт внедрения небольшой биогазовой установки в поселке Лески Кенийского района Одесской обл. Биогазовая установка разработана и изготовлена частной фирмой в Днепропетровске.

Установка монтировалась в пределах реализации проекта "Модель утилизации отходов животноводства в регионе дельты Дуная", разработанного группой одесских неправительственных организаций в рамках программы малых экологических проектов при финансовой поддержке британского фонда окружающей "среды для Европы" и при содействии министерства по делам охраны окружающей среды, продовольствия и сельского хозяйства Британии и британского совета.

При нормальной загрузке и эксплуатации биогазовая установка, объем реактора которой составляет 3 м3, сможет выдавать до 3 м3 биогаза в сутки за счет переработки отходов от 100 голов птицы, или от 10 свиней, или от 4 коров. Это минимальные требования к работе установки.

Реактор установлен на поверхности земли. Это связано, во-первых, с конструкцией реактора. Загрузка в него биологического сырья осуществляется снизу, через экструдер, а сливание отработанного материала - через верх, что и отличает отмеченную конструкцию от других, в которых загрузка идет сверху, а отбор - снизу. Второй причиной наземного размещения является высокий уровень почвенных вод в селе - на глубине 50 см. Зимой подогрев навоза в реакторе осуществляется за счет электроэнергии, а летом хватает энергии солнца.

Получаемый газ используется, в первую очередь, для приготовления еды - газопровод подведен к летней кухне. Нужно поддерживать в реакторе температуру 30-35°С и следить за выработкой биогаза. Переработанный в биореакторе навоз необходимо выгружать своевременно.

Как уже отмечалось, в западной Европе в фермерских хозяйствах животноводческого направления широко внедряются биогазовые установки. Особенностью таких установок является введение в их состав энергосиловых блоков, где биогаз превращается в электроэнергию, и использование, кроме навоза, растительной массы.

Для подачи растительной массы в метантанки целесообразно использовать небольшие питатели. Вместимость приемного бункера такого питателя составляет 4 м3, общая длина конвейера - 6 м; мощность привода - 7,5 кВт.

Для комплектации фермерских биогазовых установок может быть эффективно использован мини-энергосиловой блок "С-ВОХ50". Электрическая мощность такого энергосилового блока составляет от 25 до 48 кВт; тепловая мощность - от 49 до 97 кВт.

Германия предлагает небольшие компактные биогазовые установки мощностью 30 и 100 кВт, которые рассчитаны на использование навоза и кукурузного силоса. Установка на 30 кВт включает накопитель-погрузчик на 5 м3 твердой органической массы, бетонный ферментер на 315 м3 и УШ-газовый мотор мощностью 30 кВт электрической и 46 кВт тепловой энергии. Для обеспечения работы биогазовой установки на 30кВт в случае использования смеси 50 % навоза и 50 % силоса необходимо иметь 5-7 га кукурузы. Установка на 100 кВт имеет приемник-питатель кукурузного силоса вместимостью до 20 м3, ферментатор вместимостью 1200 м3 и газмотор имей мощностью 100 кВт электрической и 108 кВт тепловой энергии. При использовании для обеспечения работы биогазовой установки на 100 кВт смеси 50 % навоза и 50 % кукурузного силоса нужно иметь 30 га кукурузы.

Следует отметить, что, внедряя биогазовые установки, зарубежные фирмы применяют индивидуальный подход к каждому фермеру. Для конкретного хозяйства, после соответствующего обследования имеющихся видов и ресурсов биомассы и определения основных целей использования установки, разрабатывается или подбирается соответствующая технология (технологический режим), на основе чего проектируется установка (технологическая линия). Комплектация зависит от избранной технологии. Большинство фирм разрабатывают и монтируют биогазовые установки "под ключ". Большое внимание при использовании биогазовых установок уделяется технологиям подготовки биомассы к сбраживанию, поскольку от качества сырья зависят энергетические показатели. Для эффективного управления биогазовой установкой целесообразно использовать измерительную и регулировочную техники.

Наиболее эффективной технологией считается сбраживание с превращением энергии биогаза в электрическую и тепловую.

ТЕМА № 6

ФОРМИРОВАНИЕ МИКРОКЛИМАТА В ЖИВОТНОВОДЧЕСКИХ ПОМЕЩЕНИЯХ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: