Теорема 2.2 об определителе произведения матриц

Пусть и — квадратные матрицы одного и того же порядка. Тогда

(2.6)

т.е. определитель произведения матриц равен произведению их определителей.

Доказательство теоремы проводится в три этапа. Во-первых, теорема справедлива, если один из сомножителей имеет простейший вид (см. рис. 1.6). Пусть, например, матрица квадратная л-го порядка имеет простейший вид: . Если , то в произведении последние строк будут нулевыми. Тогда по свойствам 1,2 определителей: и , т.е. равенство (2.6) верно. Если же , то — единичная матрица. Тогда


т.е. равенство (2.6) справедливо. Аналогично рассматривается случай, когда матрица имеет простейший вид.


Второй этап — доказательство формулы (2.6) для элементарных матриц. Если матрица элементарная вида (1.1), (1.3) или (1.5), то ее определитель равен или 1 соответственно, а произведение есть элементарное преобразование столбцов матрицы . По свойствам 1, 3, 6 или 9 определителей убеждаемся в справедливости (2.6). Аналогично рассматривается случай, когда матрица элементарная вида (1.2), (1.4), (1.6).

Третий этап — доказательство формулы (2.6) для произвольных квадратных матриц n-го порядка. По теореме 1.2 любую квадратную матрицу можно представить в виде произведения простейшей (она является элементарной) и элементарных преобразующих матриц:

и .


Тогда, используя результат первых двух этапов, можно записать


что и требовалось доказать.

21. Обернена матриця. Невироджені матриці, критерій невиродженості матриць.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: