Связанные с плоскостью (обзор)

1. Взаимное расположение двух плоскостей.

Выяснить взаимное расположение двух плоскостей позволяет следующая теорема:

Теорема 1. Пусть в аффинной системе координат плоскости и заданы общими уравнениями:

,

.

или ;

(коэффициенты при х, у, z пропорциональны, а свободные члены им не пропорциональны);

.

2. Взаимное расположение трех плоскостей.

Вопрос о взаимном расположении трех плоскостей , и сводится к исследованию вопроса о взаимном расположении трех пар плоскостей: и , и , и .

Возможны восемь случаев взаимного расположения этих плоскостей:

1) (рис. 70, а);

2) (рис. 70, б);

3) (рис. 70, в);

4) (следовательно, ) (рис. 70, г);

5) (следовательно, ) (рис. 70, д);

6) (рис. 70, е);

7) (рис. 70, ж);

8) (рис. 70, з).


3. Геометрический смысл знака многочлена .

Теорема 2. Если в аффинной системе координат плоскость задана уравнением , то два полупространства, на которые эта плоскость разбивает пространство, определяются условиями

и .

4. Пучок и связка плоскостей.

Пучком плоскостей называется множество всех плоскостей, проходящих через одну и ту же прямую . Прямая называется осью этого пучка.

Пусть . Тогда уравнение пучка плоскостей с осью имеет вид:

, где не равны нулю одновременно.

Связкой плоскостей называется множество всех плоскостей, проходящих через одну и ту же точку . Точка называется центром связки.

Пусть . Тогда уравнение связки плоскостей имеет вид:

, где и не равны нулю одновременно.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: