Тема 1.4 Теория теплообмена

1. Основные понятия и определения

2. Температурное поле. Уравнение теплопроводности

3. Стационарная теплопроводность через плоскую стенку

4. Стационарная теплопроводность через цилиндрическую стенку

5. Стационарная теплопроводность через шаровую стенку

6. Факторы, влияющие на конвективный теплообмен

7. Закон Ньютона-Рихмана

8. Критериальные уравнения конвективного теплообмена

9. Расчетные формулы конвективного теплообмена

10. Общие сведения о тепловом излучении

11. Основные законы теплового излучения

12. Теплопередача через плоскую стенку

13. Теплопередача через цилиндрическую стенку

14. Типы теплообменных аппаратов

15. Расчет теплообменных аппаратов

1. Основные понятия и определения

Теория теплообмена изучает процессы распространения теплоты в твердых, жидких и газообразных телах. Перенос теплоты может передаваться тремя способами:

- теплопроводностью;

- конвекцией;

- излучением (радиацией).

Процесс передачи теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты. При нагревании тела, кинетическая энергия его молекул возрастает и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии.

Конвекция – это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретой жидкости или газа. При этом, перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально. Этот вид передачи теплоты сопровождается всегда теплопроводностью. Одновременный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом.

В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн называется излучением (радиацией). Этот процесс происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение э/м волн в пространстве, поглощение энергии излучения другим телом. Совместный теплообмен излучением и теплопроводностью называют радиационно-кондуктивным теплообменом.

Совокупность всех трех видов теплообмена называется сложным теплообменом.

Процессы теплообмена могут происходить в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по-разному и описывается различными уравнениями.

Процесс переноса теплоты может сопровождаться переносом вещества (массообмен). Например испарение воды в воздух, движение жидкостей или газов в трубопроводах и.т.п. и.т.д. Тогда процесс теплообмена усложняется, так как теплота дополнительно переносится с массой движущегося вещества.

2. Температурное поле. Уравнение теплопроводности

Будем рассматривать только однородные и изотропные тела, т.е. такие тела, которые обладают одинаковыми физическими свойствами по всем направлениям. При передаче теплоты в твердом теле, температура тела будет изменяться по всему объему тела и во времени. Совокупность значений температуры в данный момент времени для всех точек изучаемого пространства называется температурным полем:

(1.4.1)

где t –температура тела; x, y, z -координаты точки; τ - время.

Такое температурное поле называется нестационарным ∂t/∂i ¹ 0, т.е. соответствует неустановившемуся тепловому режиму теплопроводности.

Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным:

(1.4.2)

Уравнение двухмерного температурного поля:

для нестационарного режима:

(1.4.3)

для стационарного режима:

(1.4.4)

Уравнение одномерного температурного поля:

для нестационарного режима:

(1.4.5)

для стационарного режима:

(1.4.6)

Изотермической поверхностью называется поверхность тела с одинаковой температурой.

Рассмотрим две изотермические поверхности (рис. 1.4.1) с температурами t и t + ∆t.

Рис. 1.4.1. Изотермические поверхности

Градиентом температуры называют предел отношения изменения температуры ∆t к расстоянию между изотермами по нормали ∆n, когда стремится к нулю:

(1.4.7)

Температурный градиент-это вектор, направленной по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной температуры t по нормали n:

Количество теплоты, проходящее через изотермическую поверхность F в единицу времени называется тепловым потоком – Q, [Вт=Дж/с].

Тепловой поток, проходящий через единицу площади называют плотностью теплового потока – q = Q / F, [Вт/м2].

Для твердого тела уравнение теплопроводности подчиняется закону Фурье:

«Тепловой поток, передаваемый теплопроводностью, пропорционален градиенту температуры и площади сечения, перпендикулярного направлению теплового потока».

(1.4.8)

где λ – коэффициент теплопроводности, [Вт/(м∙К)].

Коэффициент теплопроводности является физическим параметром вещества, характеризующим способность тела проводить теплоту, Он зависит от рода вещества, давления и температуры. Также на её величину влияет влажность вещества. Для большинства веществ коэффициент теплопроводности определяются опытным путем и для технических расчетов берут из справочной литературы.

3. Стационарная теплопроводность через плоскую стенку

1).Однородная плоская стенка (рис. 1.4.2).

Рис. 1.4.2. Однослойная плоская стенка

Температуры поверхностей стенки –tст1 и tст2.

Плотность теплового потока:

(1.4.9)

где δ - толщина стенки.

Если R =δ/λ -термическое сопротивление теплопроводности стенки [(м2∙К)/Вт], то плотность теплового потока:

(1.4.10)

Общее количество теплоты, которое передается через поверхность F за время τ определяется:

(1.4.11)

Температура тела в точке с координатой х находится по формуле:

(1.4.12)

2).Многослойная плоская стенка.

Рассмотрим 3-х слойную стенку (рис. 1.4.3).

Температура наружных поверхностей стенок tСТ1 и tСТ2, коэффициенты теплопроводности слоев λ1, λ2, λ3, толщина слоев δ1, δ2, δ3.

Рис. 1.4.3. Многослойная плоская стенка

Плотности тепловых потоков через каждый слой стенки:

(1.4.13)

Решая эти уравнения, относительно разности температур и складывая, получаем:

(1.4.14)

где: Ro – общее термическое сопротивление теплопроводности многослойной стенки

Температура слоев определяется по следующим формулам:

(1.4.15)
(1.4.16)

4. Стационарная теплопроводность через цилиндрическую стенку

1). Однородная цилиндрическая стенка.

Рассмотрим однородный однослойный цилиндр длиной l, внутренним диаметром d1 и внешним диаметром d2 (рис. 1.4.4).

Рис. 1.4.4. Однослойная цилиндрическая стенка

Температуры поверхностей стенки –tст1 и tст2.

Уравнение теплопроводности по закону Фурье в цилиндрических координатах:

(1.4.17)

или

(1.4.18)

где Δt = tст1 – tст2 – температурный напор; λ – κоэффициент теплопроводности стенки.

Для цилиндрических поверхностей вводят понятия тепловой поток единицы длины цилиндрической поверхности (линейная плотность теплового потока), для которой расчетные формулы будут:

(1.4.19)

Температура тела внутри стенки с координатой dх:

(1.4.20)

2). Многослойная цилиндрическая стенка.

Допустим, цилиндрическая стенка состоит из трех плотно прилегающих слоев (рис.1.4.5).

Рис. 1.4.5. Многослойная цилиндрическая стенка

Температура внутренней поверхности стенки tст1, температура наружной поверхности стенки tст2, коэффициенты теплопроводности слоев λ1, λ2, λ3, диаметры слоев d1, d2, d3, d4.

Тепловые потоки для слоев будут:

1-й слой

(1.4.21)

2-й слой

(1.4.22)

3-й слой

(1.4.23)

Решая полученные уравнения, получаем для теплового потока через многослойную стенку:

(1.4.24)

Для линейной плотности теплового потока имеем:

(1.4.25)

Температуру между слоями находим из следующих уравнений:

(1.4.26)
(1.4.27)

5. Стационарная теплопроводность через шаровую стенку

Пусть имеется полый шар (рис.1.4.6) – внутренний диаметр d1, внешний диаметрd2, температура внутренней поверхности стенки – tст1, температура наружной поверхности стенки – tст2, коэффициент теплопроводности стенки - λ.

Рис. 1.4.6. Однородная шаровая стенка

Уравнение теплопроводности по закону Фурье в сферических координатах:

(1.4.28)

или

(1.4.29)

где: Δt = tст1 – tст2 – температурный напор; δ – толщина стенки.

6. Факторы, влияющие на конвективный теплообмен

Конвективным теплообменом называется одновременный перенос теплоты конвекцией и теплопроводностью.

В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Основными факторами, влияющими на процесс теплоотдачи являются:

1). Природа возникновения движения жидкости вдоль поверхности стенки.

Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция).

Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция).

2). Режим движения жидкости.

Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным.

Беспорядочное, хаотическое, вихревое движение называется турбулентным.

3). Физические свойства жидкостей и газов.

Большое влияние на конвективный теплообмен оказывают следующие физические параметры: коэффициент теплопроводности (l), удельная теплоемкость (с), плотность (ρ), коэффициент температуропроводности (а = λ/cр·ρ), коэффициент динамической вязкости (μ) или кинематической вязкости (ν = μ/ρ), температурный коэффициент объемного расширения (β = 1/Т).

4). Форма (плоская, цилиндрическая), размеры и положение поверхности (горизонтальная, вертикальная).

7. Закон Ньютона-Рихмана

Процесс теплообмена между поверхностью тела и средой описывается законом Ньютона-Рихмана, которая гласит, что количество теплоты, передаваемая конвективным теплообменом прямо пропорционально разности температур поверхности тела (t'ст) и окружающей среды (t):

(1.4.30)

или

(1.4.31)

где α - коэффициент теплоотдачи [Вт/(м2К)], характеризует интенсивность теплообмена между поверхностью тела и окружающей средой.

Факторы, которые влияют на процесс конвективного теплообмена, включают в этот коэффициент теплоотдачи. Тогда коэффициент теплоотдачи является функцией этих параметров и можно записать эту зависимость в виде следующего уравнения:

(1.4.32)

где: Х – характер движения среды (свободная, вынужденная); Ф – форма поверхности; lo – характерный размер поверхности (длина, высота, диаметр и т.д.); xc; yc; zc – координаты; wo – скорость среды (жидкость, газ); θ = (t'ст - t) – температурный напор; λ – коэффициент теплопроводности среды; а – коэффициент температуропроводности среды; ср –изобарная удельная теплоемкость среды; ρ –плотность среды; ν – коэффициент кинематической вязкости среды; β – температурный коэффициент объемного расширения среды.

Уравнение (1.4.32) показывает, что коэффициент теплоотдачи величина сложная и для её определения невозможно дать общую формулу. Поэтому для определения коэффициента теплоотдачи применяют экспериментальный метод исследования.

Достоинством экспериментального метода является: достоверность получаемых результатов; основное внимание можно сосредоточить на изучении величин, представляющих наибольший практический интерес.

Основным недостатком этого метода является, что результаты данного эксперимента не могут быть использованы, применительно к другому явлению, которое в деталях отличается от изученного. Поэтому выводы, сделанные на основании анализа результатов данного экспериментального исследования, не допускают распространения их на другие явления. Следовательно, при экспериментальном методе исследования каждый конкретный случай должен служить самостоятельным объектом изучения.

8. Критериальные уравнения конвективного теплообмена

Используя теорию подобия можно получить уравнение теплоотдачи (1.4.32) для конвективного теплообмена в случае отсутствия внутренних источников тепла в следующем критериальной форме:

(1.4.33)

где: X0; Y0; Z0 – безразмерные координаты; Nu = α ·l0/λ - критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью (газом); Re = w·l0/ν - критерий Рейнольдса, характеризует соотношение сил инерции и вязкости и определяет характер течения жидкости (газа); Gr = (β·g·l03·Δt)/ν2 - критерий Грасгофа, характеризует подъемную силу, возникающую в жидкости (газе) вследствие разности плотностей; Pr = ν/а = (μ·cp)/λ - критерий Прандтля, характеризует физические свойства жидкости (газа); l0 – определяющий размер (длина, высота, диаметр).

9. Расчетные формулы конвективного теплообмена

Приведем некоторые основные расчетные формулы конвективного теплообмена (академика М.А.Михеева), которые даны для средних значений коэффициентов теплоотдачи по поверхности стенки.

Свободная конвекция в неограниченном пространстве.

а). Горизонтальная труба диаметром d при 103<(Gr··Pr)жd <108.

Nuжdср. = 0,5·(Grжd ·Pr ж)0,25 (Pr ж/Prст)0,25 (1.4.34)

б). Вертикальная труба и пластина:

1). ламинарное течение - 103<(Gr ·Pr)ж <109:

Nuжdср. = 0,75· (Grжd ·Pr ж)0,25·(Pr ж/Prст)0,25 (1.4.35)

2). турбулентное течение - (Gr ·Pr)ж > 109:

Nuжdср. = 0,15· (Grжd ·Pr ж)0,33 ·(Pr ж/Prст)0,25 (1.4.36)

Здесь значения Grжd и Pr ж берутся при температуре жидкости (газа), а Prст при температуре поверхности стенки.

Для воздуха Pr ж/Prст = 1 и формулы (1.4.34-1.4.36) упрощаются.

Вынужденная конвекция.

Режим течения определяется по величине Re.

а). Течение жидкости в гладких трубах круглого сечения.

1) ламинарное течение – Re < 2100

Nuжdср. = 0,15·Reжd0,33·Prж0,33·(Grжd·Prж)0,1·(Prж/Prст)0,25·εl (1.4.37)

где εl - коэффициент, учитывающий изменение среднего коэффициента теплоотдачи по длине трубы и зависит от отношения длины трубы к его диаметру (l/d). Значения этого коэффициента представлена в таблице 1.4.1.

Таблица 1.4.1. Значение εl при ламинарном режиме.

l/d                  
εl 1,9 1,7 1,44 1,28 1,18 1,13 1,05 1,02 1,0

2) переходной режим – 2100 < Re < 104

Nuжdср. = К0·Prж0,43·(Prж/Prст)0,25·εl (1.4.38)

Коэффициент К0 зависит от критерия Рейнольдса Re и представлена в таблице 10.2.

Таблица 1.4.2. Значение К0.

Re·104 2,1 2,2 2,3 2,4 2,5            
К0 1,9 2,2 3,3 3,8 4,4 6,0 10,3 15,5 19,5 27,0 33,3

3) турбулентное течение – Re = 104

Nuжdср. = 0,021· Reжd0,8·Prж0,43· (Prж/Prст)0,25·εl (1.4.39)

Таблица 1.4.3. Значение εl при турбулентном режиме.

l/d Re = 2·103 Re = 2·104 Re = 2·105
  1,9 1,51 1,28
  1,70 1,40 1,22
  1,44 1,27 1,15
  1,28 1,18 1,10
  1,18 1,13 1,08
  1,13 1,11 1,06
  1,05 1,05 1,03
  1,02 1,02 1,02
  1,00 1,00 1,00

б) Обтекание горизонтальной поверхности.

1) ламинарное течение – Re < 4·104

Nuжdср. = 0,66·Reжd0,5·Prж0,33 ·(Prж/Prст)0,25 (1.4.40)

2) турбулентное течение – Re > 4·104

Nuжdср. = 0,037·Reжd0,5·Prж0,33 ·(Prж/Prст)0,25 (1.4.41)

в) Поперечное обтекание одиночной трубы (угол атаки j = 900).

1). при Reжd = 5 - 103

Nuжdср. = 0,57·Reж0,5·Prж0,38 ·(Prж/Prст)0,25 (1.4.42)

2). при Reжd = 103 - 2·105

Nuжdср. = 0,25 ·Reж0,6·Prж0,38 ·(Prж/Prст)0,25 (1.4.42)

10. Общие сведения о тепловом излучении

Лучистая энергия возникает за счет энергии других видов в результате сложных молекулярных и внутриатомных процессов. Природа всех лучей одинакова. Они представляют собой распространяющиеся в пространстве электромагнитные волны. Источником теплового излучения является внутренняя энергия нагретого тела. Количество лучистой энергии в основном зависит от физических свойств и температуры излучающего тела. Электромагнитные волны различаются между собой длиной волны

В зависимости от длины волны l лучи обладают различными свойствами. Наименьшей длиной волны обладают космические лучи l = (0,1 – 10)оА (где оА — ангстрем, единица длины, 1оА = 10-10м). Гамма-лучи, испускаемые радиоактивными веществами, имеют длину волны до 10оА; лучи Рентгена – l = (10-200) оА; ультрафиолетовые лучи – л = (200оА - 0,4 мк (мк — микрон, 1 мк — 0,001 мм), световые лучи – l = (0,4-0,8) мк, инфракрасные или тепловые лучи – l = (0,8 – 400) мк, радио или электромагнитные лучи - l > 400 мк. Из всех лучей наибольший интерес для теплопередачи представляют тепловые лучи с l = (0,8 – 40) мк.

Лучеиспускание свойственно всем телам, и каждое из них излучает и поглощает энергию непрерывно, если температура его не равна 0°К. При одинаковых или различных температурах между телами, расположенными как угодно в пространстве, существует непрерывный лучистый теплообмен.

При температурном равновесии тел количество отдаваемой лучистой энергии будет равно количеству поглощаемой лучистой энергии. Спектр излучения большинства твердых и жидких тел непрерывен. Эти тела испускают лучи всех длин волн от малых до больших.

Спектр излучения газов имеет линейчатый характер. Газы испускают лучи не всех длин волн. Такое излучение называется селективным (избирательным). Излучение газов носит объемный характер.

Суммарное излучение с поверхности тела по всем направлениям полусферического пространства и по всем длинам волн спектра называется интегральным или полным лучистым потоком (Q).

Интегральный лучистый поток, излучаемый единицей поверхности по всем направлениям, называется излучательной способностью тела и обозначается

(1.4.43)

где dQ - элементарный лучистый поток, испускаемый элементом поверхности dF.

Каждое тело способно не только излучать, но и отражать, поглощать и пропускать через себя падающие лучи от другого тела. Если обозначить общее количество лучистой энергии, падающей на тело, через Q, то часть энергии, равная А, поглотится телом, часть, равная R, отразится, а часть, равная D, пройдет сквозь тело. Отсюда

(1.4.44)

или

(1.4.45)

Величину А называют коэффициентом поглощения. Он представляет собой отношение поглощенной лучистой энергии ко всей лучистой энергии, падающей на тело. Величину R называют коэффициентом отражения. R есть отношение отраженной лучистой энергии ко всей падающей. Величину D называют коэффициентом проницаемости. D есть отношение прошедшей сквозь тело лучистой энергии ко всей лучистой энергии, падающей на тело. Для большинства твердых тел, практически не пропускающих сквозь себя лучистую энергию, А + R = 1.

Если поверхность поглощает все падающие на нее лучи, т. е. А = 1, R = 0 и D = 0, то такую поверхность называют абсолютно черной. Если поверхность отражает полностью все падающие на нее лучи, то такую поверхность называют абсолютно белой. При этом R = 1, А = О, D = 0. Если тело абсолютно проницаемо для тепловых лучей, то D = 1, R = 0 и A = 0. В природе абсолютно черных, белых и прозрачных тел не существует, тем не менее понятие о них является очень важным для сравнения с реальными поверхностями.

Кварц для тепловых лучей непрозрачен, а для световых и ультрафиолетовых лучей прозрачен. Каменная соль прозрачна для тепловых лучей и непрозрачна для ультрафиолетовых лучей. Оконное стекло прозрачно для световых лучей, а для ультрафиолетовых и тепловых почти непрозрачно. Белая поверхность (ткань, краска) хорошо отражает лишь видимые лучи, а тепловые лучи поглощает также хорошо, как и темная. Таким образом, свойство тел поглощать или отражать тепловые лучи зависят в основном от состояния поверхности, а не от ее цвета.

Если поверхность отражает лучи под тем же углом, под которым они падают на нее, то такую поверхность называют зеркальной. Если падающий луч при отражении расщепляется на множество лучей, идущих по всевозможным направлениям, то такое отражение называют диффузным (например поверхность мела).

При исследовании лучистых потоков большое значение имеет распределение лучистой энергии, испускаемой абсолютно черным телом по отдельным длинам волн спектра. Каждой длине волны, при определенной температуре, соответствует определенная интенсивность излучения - Isl. Интенсивность излучения или спектральная (монохроматическая) интенсивность, представляет собой плотность лучистого потока тела для длин волн от l до l+dl, отнесенная к рассматриваемому интервалу длин волн dl;

(1.4.46)

где Isl - спектральная интенсивность излучения абсолютно черного тела.

11. Основные законы теплового излучения

Закон Планка. Интенсивности излучения абсолютно черного тела Isl и любого реального тела Il зависят от температуры и длины волны.

Абсолютно черное тело при данной температуре испускает лучи всех длин волн отl = 0 до l = ¥. Если каким-либо образом отделить лучи с разными длинами волн друг от друга и измерить энергию каждого луча, то окажется, что распределение энергии вдоль спектра различно.

По мере увеличения длины волны энергия лучей возрастает, при некоторой длине волны достигает максимума, затем убывает. Кроме того, для луча одной и той же длины волны энергия его увеличивается с возрастанием температуры тела, испускающего лучи (рис.1.4.7).

Рис. 1.4.7. Зависимость длины волны однородного тела от температуры

Планк установил следующий закон изменения интенсивности излучения абсолютно черного тела в зависимости от температуры и длины волны:

(1.4.48)

где е - основание натуральных логарифмов; с1 = 3,74*10-16 Вт/м2; с2 = 1,44*10-2 м*град; l - длина волны, м; Т - температура излучающего тела, К.

Из рис. 1.4.7 видно, что для любой температуры интенсивность излучения Isl возрастает от нуля (при l=0) до своего наибольшего значения, а затем убывает до нуля (при l=¥). При повышении температуры интенсивность излучения для каждой длины волны возрастает.

Закон смещения Вина. Кроме того, из рис. 1.4.7 следует, что максимумы кривых с повышением температуры смещаются в сторону более коротких волн. Длина волны lms, отвечающая максимальному значению Isl, определяется законом смещения Вина:

(1.4.49)

С увеличением температуры lms уменьшается, что и следует из закона.

Пользуясь законом смещения Вина, можно измерять высокие температуры тел на расстоянии, например, расплавленных металлов, космических тел и др.

Закон Стефана-Больцмана. Планк установил, что каждой длине волны соответствует определенная интенсивность излучения, которая увеличивается с возрастанием температуры. Тепловой поток, излучаемый единицей поверхности черного тела в интервале длин волн от l до l + dl, может быть определен из уравнения

(1.4.50)

Элементарная площадка на рис. 1.4.7, ограниченная кривой Т = const, основанием dl l ординатами l и l + dl (Isl) определяет количество лучистой энергии dEs и называется лучеиспускательной способностью абсолютно черного тела для длин волн dλ. Вся же площадь между любой кривой Т = const и осью абсцисс равна интегральному излучению черного тела в пределах от l = 0 до l = ¥ при данной температуре.

Подставляя в уравнение (1.4.50) закон Планка и интегрируя от от l = 0 до l = ¥, найдем, что интегральное излучение (тепловой поток) абсолютно черного тела прямо пропорционально четвертой степени его абсолютной температуры (закон Стефана-Больцмана).

(1.4.51)

где Сs = 5,67 Вт/(м24) - коэффициент излучения абсолютно черного тела

Отмечая на рис. 1.4.7 количество энергии, отвечающей световой части спектра (0,4—0,8 мк), нетрудно заметить, что оно для невысоких температур очень мало по сравнению с энергией интегрального излучения. Только при температуре солнца ~ 6000К энергия световых лучей составляет около 50% от всей энергии черного излучения.

Все реальные тела, используемые в технике, не являются абсолютно черными и при одной и той же температуре излучают меньше энергии, чем абсолютно черное тело. Излучение реальных тел также зависит от температуры и длины волны. Чтобы законы излучения черного тела можно было применить для реальных тел, вводится понятие о сером теле и сером излучении. Под серым излучением понимают такое, которое аналогично излучению черного тела имеет сплошной спектр, но интенсивность лучей для каждой длины волны Il при любой температуре составляет неизменную долю от интенсивности излучения черного тела Isl, т.е. существует отношение:

(1.4.52)

Величину e называют степенью черноты. Она зависит от физических свойств тела. Степень черноты серых тел всегда меньше единицы.

Большинство реальных твердых тел с определенной степенью точности можно считать серыми телами, а их излучение — серым излучением. Энергия интегрального излучения серого тела равна:

(1.4.53)

Лучеиспускательная способность серого тела составляет долю, равную е от лучеиспускательной способности черного тела.

Величину С = e∙Es называют коэффициентом излучения серого тела. Величина С реальных тел в общем случае зависит не только от физических свойств тела, но и от состояния поверхности или от ее шероховатости, а также от температуры и длины волны. Значения коэффициентов излучения и степеней черноты тел берут из таблиц.

Таблица 1.4.4. Степень черноты полного нормального излучения для различных материалов

Наименование материала t,°С ε
Алюминий полированный 50—500 0,04—0,06
Бронза   0,1
Железо листовое оцинкованное, блестящее   0,23
Жесть белая, старая   0,28
Золото полированное 200 - 600 0,02—0,03
Латунь матовая 20-350 0,22
Медь полированная 50—100 0,02
Никель полированный 200—400 0,07—0,09
Олово блестящее 20—50 0,04—0,06
Серебро полированное 200—600 0,02—0,03
Стальной листовой прокат   0,56
Сталь окисленная 200—600 0,8
Сталь сильно окисленная   0,98
Чугунное литье   0,81
Асбестовый картон   0,96
Дерево строганое   0,8—0,9
Кирпич огнеупорный 500—1000 0,8—0,9
Кирпич шамотный   0,75
Кирпич красный, шероховатый   0,88—0,93
Лак черный, матовый 40—100 0,96—0,98
Лак белый 40—100 0:8—0,95
Масляные краски различных цветов...   0,92—0,96
Сажа ламповая 20—400 0,95
Стекло 20—100 0,91—0,94
Эмаль белая   0,9

Закон Кирхгофа. Для всякого тела излучательная и поглощательная способности зависят от температуры и длины волны. Различные тела имеют различные значения Е и А. Зависимость между ними устанавливается законом Кирхгофа:

(1.4.54)

Отношение лучеиспускательной способности тела (Е) к его поглощательной способности (А) одинаково для всех серых тел, находящихся при одинаковых температурах и равно лучеиспускательной способности абсолютно черного тела при той же температуре

Из закона Кирхгофа следует, что если тело обладает малой поглощательной способностью, то оно одновременно обладает и малой лучеиспускательной способностью (полированные металлы). Абсолютно черное тело, обладающее максимальной поглощательной способностью, имеет и наибольшую излучательную способность.

Закон Кирхгофа остается справедливым и для монохроматического излучения. Отношение интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т.е. является функцией только длины волны и температуры.

Поэтому тело, которое излучает энергию при какой-нибудь длине волны, способно поглощать ее при этой же длине волны. Если тело не поглощает энергию в какой-то части спектра, то оно в этой части спектра и не излучает.

Из закона Кирхгофа также следует, что степень черноты серого тела ε при одной и той же температуре численно равно коэффициенту поглощения А.

12. Теплопередача через плоскую стенку

Теплопередачей называется передача теплоты от горячего теплоносителя к холодному теплоносителю через стенку, разделяющую эти теплоносители.

Примерами теплопередачи являются: передача теплоты от греющей воды нагревательных элементов (отопительных систем) к воздуху помещения; передача теплоты от дымовых газов к воде через стенки кипятильных труб в паровых котлах; передача теплоты от раскаленных газов к охлаждающей воде (жидкости) через стенку цилиндра двигателя внутреннего сгорания; передача теплоты от внутреннего воздуха помещения к наружному воздуху и т. д. При этом ограждающая стенка является проводником теплоты, через которую теплота передается теплопроводностью, а от стенки к окружающей среде конвекцией и излучением. Поэтому процесс теплопередачи является сложным процессом теплообмена.

При передаче теплоты от стенки к окружающей среде в основном преобладает конвективный теплообмен, поэтому будут рассматриваться такие задачи.

1). Теплопередача через плоскую стенку.

Рассмотрим процесс передачи теплоты между двумя жидкостями-теплоносителями, разделенными стенкой (рис. 1.4.8).

Рис. 1.4.8. Схема передачи теплоты от одного жидкого теплоносителя к другому через плоскую стенку

В этом случае весь процесс теплообмена можно рассматривать как состоящий из трех этапов.

Первый этап — конвективный теплообмен между жидкостью, имеющей постоянную температуру Тж1 и стенкой с температурой Тст1. Условия этого теплообмена характеризуются коэффициентом теплоотдачи α1 и определяются уравнением Ньютона:

(1.4.55)

Второй этап — передача теплоты через стенку за счет теплопроводности. Плотность теплового потока определяется из уравнения:

(1.4.56)

Третий этап — конвективный теплообмен между поверхностью стенки, имеющей температуру Тст2 и второй жидкостью с температурой Тж2. Условия теплообмена характеризуются коэффициентом теплоотдачи α2 и определяется уравнением Ньютона:

(1.4.57)

Решая совместно уравнения (1.455)—(1.457) относительно q, получаем

(1.4.58)

где К — коэффициент теплопередачи; ΔТ — температурный напор.

13. Теплопередача через цилиндрическую стенку

Принцип расчета теплового потока через цилиндрическую стенку аналогична как и для плоской стенки. Рассмотрим однородную трубу (рис. 1.4.9) с теплопроводностью l, внутренний диаметр d1, наружный диаметр d2, длина l. Внутри трубы находится горячая среда с температурой t'ж, а снаружи холодная среда с температурой t''ж.

Рис. 1.4.9. Схема передачи теплоты от одного жидкого теплоносителя к другому через цилиндрическую стенку

Количество теплоты, переданной от горячей среды к внутренней стенке трубы по закону Ньютона-Рихмана имеет вид:

(1.4.59)

где a1 – коэффициент теплоотдачи от горячей среды с температурой tж1 к поверхности стенки с температурой tст1;

Тепловой поток, переданный через стенку трубы, определяется по уравнению:

(1.4.60)

Тепловой поток от второй поверхности стенки трубы к холодной среде определяется по формуле:

(1.4.61)

где a2 – коэффициент теплоотдачи от второй поверхности стенки к холодной среде с температурой tж2.

Решая эти три уравнения, получаем:

(1.4.62)

где Кl = 1/[1/(a1d1) + 1/(2lln(d2/d1) + 1/(a2d2)] – линейный коэффициент теплопередачи,

или

Rl = 1/ Кl = [1/(a1d1) + 1/(2lln(d2/d1) + 1/(a2d2)] – полное линейное термическое сопротивление теплопередачи через однослойную цилиндрическую стенку.

1/(a1d1), 1/(a2d2) – термические сопротивления теплоотдачи поверхностей стенки;

1/(2lln(d2/d1) - термическое сопротивление стенки.

Для многослойной (n слоев) цилиндрической стенки полное линейное термическое сопротивление будет определяться по следующей формуле:

Rl = [1/(a1d1) + 1/(2l1ln(d2/d1) + 1/(2l3ln(d3/d2) + 1/(2lnln(dn+1/dn) + 1/(a2dn)] (1.4.63)

14. Типы теплообменных аппаратов

Теплообменным аппаратом называют всякое устройство, в котором одна жидкость — горячая среда, передает теплоту другой жидкости - холодной среде. В качестве теплоносителей в тепловых аппаратах используются разнообразные капельные и упругие жидкости в самом широком диапазоне давлений и температур. По принципу работы аппараты делят на регенеративные, смесительные и рекуперативные.

В регенеративных аппаратах горячий теплоноситель отдает свою теплоту аккумулирующему устройству, которое в свою очередь периодически отдает теплоту второй жидкости - холодному теплоносителю, т. е. одна и та же поверхность нагрева омывается то горячей, то холодной жидкостью.

В смесительных аппаратах передача теплоты от горячей к холодной жидкости происходит при непосредственном смешении обеих жидкостей, например смешивающие конденсаторы.

Особенно широкое развитие во всех областях техники получили рекуперативные аппараты, в которых теплота от горячей к холодной жидкости передается через разделительную стенку. Только такие аппараты будут рассмотрены в дальнейшем.

Теплообменные аппараты могут иметь самые разнообразные назначения — паровые котлы, конденсаторы, пароперегреватели, приборы центрального отопления и т. д. Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря на большое разнообразие теплообменных аппаратов, основные положения теплового расчета для них остаются общими.

В теплообменных аппаратах движение жидкости осуществляется по трем основным схемам.

Если направление движения горячего и холодного теплоносителей совпадают, то такое движение называется прямотоком (рис. 1.4.10,а).

Рис. 1.4.10. Основные схемы движения жидкости в теплообменных аппаратах

Если направление движения горячего теплоносителя противоположно движению холодного теплоносителя, то такое движение называется противотоком (рис. 1.4.10,б). Если же горячий теплоноситель движется перпендикулярно движению холодного теплоносителя, то такое движение называется перекрестным током (рис. 1.4.10,в). Кроме этих основных схем движения жидкостей, в теплообменных аппаратах применяют более сложные схемы движения, включающие все три основные схемы.

15. Расчет теплообменных аппаратов.

Целью теплового расчета является определение поверхности теплообмена, а если последняя известна, то целью расчета является определение конечных температур рабочих жидкостей. Основными расчетными уравнениями теплообмена при стационарном режиме являются уравнение теплопередачи и уравнение теплового баланса. Уравнение теплопередачи:

где Q — тепловой поток, Вт, k - средний коэффициент теплопередачи, Вт/(м2град), F — поверхность теплообмена в аппарате, м2, t1 и t2 - соответственно температуры горячего и холодного теплоносителей.

Уравнение теплового баланса при условии отсутствия тепловых потерь и фазовых переходов:

или

где V1 r1, V2 r2 - массовые расходы теплоносителей, кг/сек; cр1 и cр2 - средние массовые теплоемкости жидкостей в интервале температур от t/ до t//; t/1 и t//1 температуры жидкостей при входе в аппарат; t/2 и t//2 - температуры жидкостей при выходе из аппарата.

Величину произведения

называют водяным, или условным, эквивалентом.

С учетом последнего уравнение теплового баланса может быть представлено в следующем виде:

(1.4.64)

где W2, W1 - условные эквиваленты горячей и холодной жидкостей.

При прохождении через теплообменный аппарат рабочих жидкостей изменяются температуры горячих и холодных жидкостей. На изменение температур большое влияние оказывают схема движения жидкостей и величины условных эквивалентов. На рис. 1.4.11 представлены температурные графики для аппаратов с прямотоков, а на рис. 1.4.12 для аппаратов с противотоком.

Рис. 1.4.11. Температурные графики для аппаратов с прямотоков Рис. 1.4.12. Температурные графики для аппаратов с противотоков

Как видно из рис. 1.4.11, при прямотоке конечная температура холодного теплоносителя всегда ниже конечной температуры горячего теплоносителя. При противотоке (рис. 1.4.12) конечная температура холодной жидкости может быть значительно выше конечной температуры горячей жидкости. Следовательно, в аппаратах с противотоком можно нагреть холодную среду, при одинаковых начальных условиях, до более высокой температуры, чем в аппаратах с прямотоком. Кроме того, как видно из рисунков, наряду с изменениями температур изменяется также и разность температуря между рабочими жидкостями, или температурный напор Dt.

Величины Dt и k можно принять постоянными только в пределах элементарной поверхности теплообмена dF. Поэтому уравнение теплопередачи для элемента поверхности теплообмена dF справедливо лишь в дифференциальной форме:

(1.4.65)

Тепловой поток, переданный через всю поверхность F при постоянном среднем коэффициенте теплопередачи k, определяется интегрированием уравнения (1.4.65):

(1.4.66)

где Dtср - средний логарифмический температурный напор по всей поверхности нагрева.

Для случаев, когда коэффициент теплопередачи на отдельных участках поверхности теплообмена значительно изменяется, его усредняют:

(1.4.67)

Тогда при kср = const уравнение (1.4.66) примет вид

(1.4.68)

Если температура теплоносителей изменяется по закону прямой линии (рис.12.6, пунктирные линии), то средний температурный напор в аппарате равен разности среднеарифметических величин:

(1.4.69)
Рис. 1.4.13. Температурные графики для аппаратов с противотоков

Однако температуры рабочих жидкостей меняются по криволинейному закону. Поэтому уравнение (1.4.69) будет только приближенным и может применяться при небольших изменениях температуры обеих жидкостей. При криволинейном изменении температуры величину Dtср называют среднелогарифмическим температурным напором и определяется по формулам:

для аппаратов с прямотоком

(1.4.70)

для аппаратов с противотоком

(1.4.70)

Численные значения Dtср для аппаратов с противотоком при одинаковых условиях всегда больше Dtср для аппаратов с прямотоком, поэтому аппараты с противотоком имеют меньшие размеры.

Контрольные вопросы

1. Какими способами осуществляется перенос теплоты?

2. Что такое теплопроводность?

3. Сформулируйте основной закон теплопроводности (закон Фурье) и приведите его математическое выражение.

4. Что называется температурным градиентом и коэффициентом теплопроводности и как они определяются?

5. От чего зависит коэффициент теплопроводности?

6. Приведите выражения теплового потока для теплопроводности через плоскую и цилиндрическую однослойную и многослойную стенки.

7. Приведите основной закон конвективного теплообмена.

8. Приведите критериальные зависимости в общем виде для конвективного теплообмена при свободной и вынужденной конвекции.

9. Опишите сущность процесса лучистого теплообмена.

10. Сформулируйте основные законы теплового излучения: Планка, Стефана-Больцмана.

11. В чем отличие излучения газов от излучения твердых тел?

12. Для чего применяются экраны и какими свойствами они должны обладать?

13. Что называется теплопередачей?

14. Приведите уравнение теплопередачи для плоской стенки.

15. Объясните физический смысл коэффициента теплопередачи.

16. От чего зависит величина коэффициента теплоотдачи?

17. Какие существуют виды теплообмена между телами?

18. Как определить коэффициент теплопередачи для однослойной плоской стенки?

19. Каким бывает теплообмен в зависимости от способа движения жидкости или газа?

20. Какие аппараты называются теплообменниками?

21. Приведите уравнение теплового баланса и теплопередачи теплообменных аппаратов.

22. Как определяется среднелогарифмический температурный напор независимо от схемы «прямоток» и «противоток»?

23. Как подразделяются теплообменники по принципу действия?



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: