В сжимаемом газе. Для установившегося плоскопараллельного потока сжимаемого газа в уравнениях Навье–Стокса (7.2) произведем оценку порядка величин членов этих уравнений для

Для установившегося плоскопараллельного потока сжимаемого газа в уравнениях Навье–Стокса (7.2) произведем оценку порядка величин членов этих уравнений для пограничного слоя несжимаемой жидкости. Тогда первое уравнение системы

после анализа порядков величин его членов упрощается и запишется следующим образом:

. (7.7)

Вторым уравнением системы (7.2) так же, как и для несжимаемой жидкости, можно пренебречь. Из него также следует, что , т. е. вновь возможна замена на .

Уравнение неразрывности для установившегося движения сжимаемой жидкости (3.1а) для плоского случая запишем как

. (7.7а)

Так как в уравнении (7.7) коэффициент вязкости является функцией температуры, то к записанным двум уравнения необходимо добавить уравнение энергии. После его преобразования с учетом малости членов получаем

, (7.7б)

где – коэффициент теплопроводности .

Таким образом, для установившегося движения сжимаемого газа в пограничном слое необходимо решать систему трех уравнений (7.7). Основные неизвестные в этой системе уравнений – . Так как , то можно считать известным. С помощью уравнения состояния плотность определится как , а коэффициенты вязкости и теплопроводности можно считать известными функциями температуры.

Решение дифференциальных уравнений пограничного слоя, как для сжимаемой, так и для несжимаемой жидкости, достаточно сложная процедура даже для простейших тел. В связи с этим используют приближенные методы решения задач пограничного слоя, основанные на рассмотрении интегрального соотношения, являющегося математическим выражением теоремы об изменении количества движения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: