Достаточные условия существования локальных экстремумов

  • Пусть функция непрерывна в и существуют конечные или бесконечные односторонние производные . Тогда при условии

является точкой строгого локального максимума. А если

то является точкой строгого локального минимума.

Заметим, что при этом функция не дифференцируема в точке .

  • Пусть функция непрерывна и дважды дифференцируема в точке . Тогда при условии

и

является точкой локального максимума. А если

и

то является точкой локального минимума.

  • Пусть функция дифференцируема раз в точке и , а .

Если чётно и , то - точка локального максимума. Если чётно и , то - точка локального минимума. Если нечётно, то экстремума нет.

49. Условия выпуклости и вогнутости графиков функций.

График функции y = f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале. График функции y = f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале. На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c). Примеры.
  1. Полуокружность выпукла на [–1; 1].
  2. Парабола y = x2 вогнута на интервале (-∞; +∞).
  3. График функции в одних интервалах может быть выпуклым, а в других вогнутым. Так график функции y = sin x на [0,2; π ], выпуклый в интервале (0; π) и вогнутый в (π; 2 π).
Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым. Теорема. Пусть y = f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f ''(x) > 0 – вогнутый. Доказательство. Предположим для определенности, что f ''(x) < 0 и докажем, что график функции будет выпуклым. Возьмем на графике функции y = f(x) произвольную точку M0 с абсциссой x0 Î (a; b) и проведем через точку M0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.


Итак, уравнение кривой имеет вид y = f(x). Обозначим ординату касательной, соответствующую абсциссе x. Тогда . Следовательно, разность ординат кривой и касательной при одном и том же значении x будет .

Разность f(x) – f(x0) преобразуем по теореме Лагранжа , где c между x и x0.

Таким образом,

.

К выражению, стоящему в квадратных скобках снова применим теорему Лагранжа: , где c1 между c0 и x0. По условию теоремы f ''(x) < 0. Определим знак произведения второго и третьего сомножителей.

  1. Предположим, что x > x 0. Тогда x0 < c1 < c < x, следовательно, (x – x 0) > 0 и (c – x 0) > 0. Поэтому .
  2. Пусть x < x0, следовательно, x < c < c 1 < x 0 и (x – x 0) < 0, (c – x 0) < 0. Поэтому вновь .

Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x0 Î (a; b), а это значит, что кривая выпукла. Вторая часть теоремы доказывается аналогично.

- See more at: https://www.toehelp.ru/theory/math/lecture10/lecture10.html#sthash.Znvd5lmX.dpuf

50. Точки перегиба и достаточные условия их существования.

Точка перегиба функции — это точка, в которой функция непрерывна и при переходе через которую функция меняет направление выпуклости.

Необходимое условие существования точки перегиба: если функция дважды дифференцируемая в некоторой выколотой окрестности точки , то или .

Достаточное условие существования точки перегиба: если функция в некоторой окрестности точки раз непрерывно дифференцируема, причем нечётно и , и при , а , то функция имеет в точку перегиба.

51. Асимптоты и алгоритмы их изыскания.

Аси́мпто́та [2] (от греч.ασϋμπτωτος — несовпадающий, не касающийся кривой сбесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямойстремится к нулю при удалении точки вдоль ветви вбесконечность[3].

52. Общая схема исследования функций.

При исследовании функций и построении их графиков целесообразно пользоваться следующей схемой.

1. Нахождение области определения функции.

2. Исследование функции на четность и нечетность.

3. Установление области непрерывности функции и точек разрыва. Отыскание вертикальных асимптот.

4. Исследование поведения функции при (если она там определена). Отыскание горизонтальных и наклонных асимптот.

5. Нахождение экстремумов и интервалов монотонности функции. Составление таблицы.

6. Нахождение интервалов выпуклости и вогнутости и точек перегиба графика функции.

7. Нахождение точек пересечения графика функции с осями, интервалов знакопостоянства функции. Составление таблицы. Отыскание дополнительных точек для построения графика.

8. Построение графика функции.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: