double arrow
Разомкнутая система неустойчива

В этом случае наглядная физическая трактовка условий устойчивости практически невозможна. Поэтому целесообразно воспользоваться принципом аргумента для вспомогательной функции

j (p) = 1 + Wp(p) = 1 + = = , (4.17)

где Dp(p) и Dз(p) - характеристические многочлены соответственно замкнутой и разомкнутой систем. При p=jw

j(jw) =

и D arg j(jw) = D arg Dз(jw) - D arg Dp(jw). (4.18)

0 £ w £+ ¥ 0 £ w £+ ¥ 0 £ w £+ ¥

Если разомкнутая система неустойчива и характеристическое уравнение Dp(p)=0 имеет m корней с положительной действительной частью, то условие устойчивости системы в замкнутом состоянии запишется на основании (4.15) и (4.18) в следующем виде:

D arg j(jw) = n×p/2 - (n - 2m)×p/2 = 2p× m /2. (4.19)

0 £ w £+ ¥

Это значит, что в этом случае условием устойчивости замкнутой системы является охват годографом вектора j(jw) начала координат своей комплексной плоскости m /2 раз в положительном направлении при изменении w от 0 до + ¥ . Однако использовать такую методику анализа устойчивости неудобно. Если же на основании (4.17) учесть, что

j (p) = 1 + Wp(p) или Wp(p) = j (p)- 1. (4.20)

Это означает, что j (p) и Wp(p) отличаются только постоянным смещением на единицу, т.е. началу координат на плоскости j (p) соответствует на плоскости Wp(p) точка с координатами (-1, j0).

Вместо подсчета числа охватов АФХ разомкнутой системы точки с координатами (-1, j0) целесообразно подсчитать разность между числом положительных (сверху вниз) и отрицательных переходов (снизу вверх) отрезка (-1¸-¥) дей­ствительной оси АФХ разомкнутой системы (в частотном диапазоне от 0 до + ¥).Для устойчивости системы в замкнутом состоянии эта разность должна быть равна m/2, где m - число корней характеристического уравнения разомкнутой системы с положительной действительной частью.




Примечание. Если АФХ разомкнутой системы начинается (при w=0) на отрезке (-1¸-¥) действительной оси, то учитывается 1/2 перехода с соответствующим знаком.

Если разомкнутая система нейтрально устойчива, т.е. в состав Wp(p) входят интегрирующие звенья, то для анализа устойчивости замкнутой системы АФХ разомкнутой системы должна быть дополнена окружностью бесконечно большого радиуса, проходящей в отрицательном направлении число квадрантов, соответствующих числу интегрирующих звеньев.

Пример 4.2. Передаточная функция разомкнутой системы

Wp(p) = .

Выполнить анализ устойчивости замкнутой системы с помощью критерия Найквиста для двух случаев: T1<<T2 и T1>>T2.



Характеристическое уравнение разомкнутой системы

p2(T2× p + 1) = 0

имеет корни p1,2 = 0 и p3 = - 1/T2, т.е. эта система нейтрально устойчива и m=0.

АФХ разомкнутой системы показаны на рис. 4.4.

При T1<<T2 АФХ разомкнутой системы пересекает один раз отрезок (‑1¸‑¥) вещественной оси в отрицательном направлении, т.е. условие устойчивости замкнутой системы не выполняется.

При T1>>T2 разность между числом положительных и отрицательных переходов АФХ разомкнутой системы отрезка вещественной оси (-1¸ -¥) равна 1-1=0 и m=0, т.е. условие устойчивости замкнутой системы выполнено.

Рис. 4.4. АФХ разомкнутой системы, рассматриваемой в примере 4.2. штрихпунктирной линией обозначена основная часть АФХ Wp(jw) для случая T1>>T2






Сейчас читают про: