Вопрос №3

ВОПРОС №1

I. Минор

Минором элемента матрицы n-го порядка называется определитель матрицы (n-1)-го порядка, полученный из матрицы А вычеркиванием i-й строки и j-го столбца.

При выписывании определителя (n-1)-го порядка, в исходном определителе элементы находящиеся под линиями в расчет не принимаются.

.

II. Алгебраические дополнения

Алгебраическим дополнением Аij элемента аij матрицы n-го порядка называется его минор, взятый со знаком, зависящий от номера строки и номера столбца:

то есть алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца – четное число, и отличается от минора знаком, когда сумма номеров строки и столба – нечетное число.

ВОПРОС №2

Обратная матрица

На множестве матриц не определена операция деления, она заменена умножением на обратную матрицу.

Определение

Невырожденной называется квадратная матрица, определитель которой не равен нулю. Квадратная матрица называется вырожденной, если ее определитель равен нулю.

Квадратная матрица называется обратной к невырожденной матрице, если, где - это единичная матрица соответствующего порядка.

Замечание

Обратная матрица существует только для квадратных матриц с не равными нулю определителями.

\det A^{-1} = \frac{1}{\det A}, где \ \det обозначает определитель.

\ (AB)^{-1} = B^{-1}A^{-1} для любых двух обратимых матриц A и B.

\ (A^T)^{-1} = (A^{-1})^T, где (...)^T обозначает транспонированную матрицу.

\ (kA)^{-1} = k^{-1}A^{-1} для любого коэффициента k\not=0.

\ E^{-1} = E.

Если необходимо решить систему линейных уравнений Ax=b, (b — ненулевой вектор) где x — искомый вектор, и если A^{-1} существует, то x=A^{-1} b. В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Нахождение обратной матрицы с помощью присоединённой матрицы

Теорема

Если к квадратной матрице дописать справа единичную матрицу того же порядка и с помощью элементарных преобразований над строками добиться того, чтобы начальная матрица, стоящая в левой части, стала единичной, то полученная справа будет обратной к исходной.

Вопрос №3

Действия над матрицами

Сложение матриц:

Вычитание и сложение матриц сводится к соответствующим операциям над их элементами. Операция сложения матриц вводится только для матриц одинакового размера, т. е. для матриц, у которых число строк и столбцов соответственно равно. Суммой матриц А и В, называется матрица С, элементы которой равны сумме соответствующих элементов.

С = А + В

cij = aij + bij

Аналогично определяется разность матриц.

Умножение матрицы на число:

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы А на число k называется матрица В, такая что bij = k × aij.

В = k × A

bij = k × aij.

Матрица — А = (-1) × А называется противоположной матрице А.

Свойства сложения матриц и умножения матрицы на число:

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами:

1. А + В = В + А;

2. А + (В + С) = (А + В) + С;

3. А + 0 = А;

4. А — А = 0;

5. 1 × А = А;

6. α × (А + В) = αА + αВ;

7. (α + β) × А = αА + βА;

8. α × (βА) = (αβ) × А;

, где А, В и С — матрицы, α и β — числа.

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы. Произведением матрицы Аm×n на матрицу Вn×p, называется матрица Сm×p такая, что

сik = ai1 × b1k + ai2 × b2k + … + ain × bnk,

т. е. находиться сумма произведений элементов i — ой строки матрицы А на соответствующие элементы j — ого столбца матрицы В. Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А × Е = Е × А = А, где А квадратная матрица, Е — единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т.е. АВ ≠ ВА даже если определены оба произведения. Однако, если для каких — либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А × Е = Е × А = А

Умножение матриц обладает следующими свойствами:

1. А × (В × С) = (А × В) × С;

2. А × (В + С) = АВ + АС;

3. (А + В) × С = АС + ВС;

4. α × (АВ) = (αА) × В;

5. А × 0 = 0; 0 × А = 0;

6. (АВ)Т = ВТАТ;

7. (АВС)Т = СТВТАТ;

8. (А + В)Т = АТ + ВТ;


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: