Теорема Лагранжа

Теорема. Пусть функция дифференцируема в открытом промежутке и сохраняет непрерывность на концах этого промежутка. Тогда существует такая точка , что (1)

Доказательство. Рассмотрим вспомогательную функцию

Эта функция непрерывна и дифференцируема в промежутке , а на его концах принимает одинаковые значения:

Тогда удовлетворяет всем условиям теоремы Ролля и, следовательно, существует точка , в которой производная функции равна нулю:

Следствие 1. В частном случае, когда , из теоремы Лагранжа вытекает, что существует точка , в которой производная функции равна нулю: . Это означает, что теорема Лагранжа является обобщением теоремы Ролля.

Следствие 2. Если во всех точках некоторого промежутка , то в этом промежутке.

Действительно, пусть и – произвольные точки промежутка и . Применяя теорему Лагранжа к промежутку , получим

Однако во всех точках промежутка . Тогда

Учитывая произвольность точек и , получаем требуемое утверждение.

Геометрическая интерпретация теоремы Лагранжа. Разностное отношение в правой части формулы (1) есть угловой коэффициент секущей, проходящей через точки и а производная равна угловому коэффициенту касательной к графику функции в некоторой средней точке промежутка . Поэтому за теоремой Лагранжа закрепилось название “теорема о среднем”.

Рис. 6. Теорема Лагранжа устанавливает условия существования хотя бы одной точки c, в которой касательная к графику функции параллельна секущей AB. Таких точек может быть несколько.

Физическая интерпретацию теоремы Лагранжа. Пусть функция описывает смещение частицы из начального положения в зависимости от времени x ее движения по прямой. Тогда разностное отношение

представляет собой среднюю скорость движения частицы за промежуток времени , а производная – мгновенную скорость движения частицы в момент времени c. Существует такой момент времени, в который мгновенная скорость движения равна средней скорости.

Отметим, что формула (1) сохраняет свою справедливость и при b < a. Если применить теорему Лагранжа к промежутку и представить значение c в виде

где то формула (1) примет вид

(2)

Равенство (2) дает точное значение для приращения функции при конечном значении приращения аргумента и называется формулой конечных приращений. Единственным недостатком этой замечательной формулы является присутствие в ней неопределенного числа θ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: