Условия монотонности функции

Если у=f(x) непрерывна на [a,b] и дифференцируема на этом отрезке, то у=f(x)-const, тогда и только тогда, когда f¢(x)=0 при "х'[a,b]. Следствие у=f(x), y=g(x) непрерывна и диффиренцируема на (a,b) и f¢(x)=g¢(x), то f(x)=g(x)+C.

y=f(x) возрастает на Х, если для любых х12'Х, таких что х1<x2Þ f(x1)<f(x2), убывает если x1<x2Þ f(x1)>f(x2).

Достаточное условие монотонности. Если функция непрерывна, дифференцируема на (a,b) и внутри (a,b) сохраняет знак, то функция у=f(x) монотонна.

Докажем для f¢(x)>0 Þ y=f(x) – возрастает на (a,b) (для убывающей функции доказательство аналогичное)

Доказательство.

Возьмём точки из отрезка (a,b) х1 и х2, такие что х12. По теореме Лагранжа найдётся тоска с, приналежащая отрезку, для которой f(x2)-f(x1)= f¢(c)(x2-x1). Так как х1<c<x2, то точка с является внутренней точкой промежутка Х. Поэтому f¢(c)³0 и f(x2)³f(x1). Таким образом, мы доказали, что функция f(x) не убывает на промежутке Х.

Условия сущ. экстремула

Необходимое условие существования экстремума. Для того, чтобы дифференцируемая функция f(x) имела в точке х0 локальный экстремум, необходимо, чтобы в этой точке выполнялось равенство f¢(x0)=0.

Доказательство.

Поскольку х0 – точка экстремума, то существует такой интервал (х0-e, х0+e), на котором f(x0) – наибольшее или наименьшее значение. Тогда по теореме Ферма f¢(x0)=0.

Точки, в которых производная функция обращается в нуль, называются стационарными.

Достаточное условие существование экстремума. Если при переходе через точку х0 производная дифференцируемой функции f(x) меняет свой знак с плюса на минус, то точка х0 – точка локального максимума функции f(x), а если с минуса на плюс, то х0 – точка локального минимума.

Доказательство. (для максимума, для минимума – аналогично, то бишь самостоятельно)

Пусть f(x) – непрерывная дифференцируемая функция. f¢(x) меняет знак с «+» на «-». Пусть для любого хÎ (х0 -D, х0] f¢(x)>0 Þ по достаточному условию монотонности производная возрастает на данном интервале Þ f(x0)³f(x) "CÎ(x0-D, x0]

Пусть для "CÎ[х00+D) f¢(x)<0, следовательно, функция убывает на хÎ[х00+D) Þf(x0)³f(x) для любого хÎ[х00+D).

Вывод: для любого х Î (х0-D, х0+D) х0 – точка максимума для функции у=f(x). Ч.т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: