Производная сложной и обратной функции

Теорема. Если функция y=f(x) имеет обратную функцию x=g(y) и в точке х0 производная f¢(x) не равна нулю, то обратная функция g(y) диффернцируема в точке у0=f(x0) и g¢(y0)=1/f(x0) или x¢y=1/y¢x.

Доказательство.

Пусть а=f¢(x0). Тогда из дифференцируемости f(x) в х0 следует, что приращение Dу= f(x0+Dх) - f(x0) можно представить в виде Dу=аDх+аDх=(а+а) Dх, где а=а(Dх)®0 при Dх®0. Так как а не равно нулю, то отсюда следует, что Dх®0, когда Dу®0. Имеем

g¢(y0)= lim g(y+Dy)-g(y0) = lim Dx =lim ì Dyü-1 = 1.

Dy®0 Dy Dy®0 Dy Dy®0 îDxþ f¢(x0)

Теорема. Если функция у=f(x) дифференцируема в точке t0 и g(t0)=x0, то сложная функция y=f(g(x)) также дифференцируема в t0 и выполняется следующая формула: d f(g(t))/dt|t=to=f¢(x0)*g¢(t0) или y¢t=y¢x*t.

Доказательство.

Функция y=f(x) дифференцируема в точке х0, поэтому её приращение можно представить как Dy=f¢(x0)+a(Dx)*Dx. Где Dx®0 при Dt®0 поскольку функция g(t) непрерывна (следствие дифференцируемости) в точке t0. Так как а(Dx)®0 при Dx ®0 и при Dt®0. Поэтому

d f(g(t))|t=to=lim (f¢(x0)) Dx +a(Dx) Dx =

dt Dt®0 Dt Dt

=f¢(x0)g¢(t0)+0*g¢(t0)= f¢(x0)g¢(t0).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: