Дефектоскопия деталей машин. Наружный осмотр. Магнитная дефектоскопия. Электромагнитная дефектоскопия

Наружным осмотром, включая визуально-оптические методы, проверяют общее техническое состояние детали и выявляют поверхностные дефекты, например, трещины, вмятины, выбоины, задиры, коробление корпусных деталей, деформации изгиба и кручения валов, раковины, коррозионные, эрозионные и другие поражения поверхностей.

Вначале проверяют наличие дефектов, выбраковка по которым может быть однозначной.

Для обнаружения дефектов с расстояния 250 мм и менее применяются монокулярные и бинокулярные лупы.

Для обнаружения поверхностных дефектов в отверстиях и закрытых полостях деталей служат эндоскопы, перископические дефектоскопы и др. приборы.

Общие сведения. Магнитные методы дефектоскопии предназначены для контроля деталей, изготовленных только из ферромагнитных материалов (сталь, чугун). Сущность этих методов заключается в обнаружении неоднородности магнитного потока, вызываемой несплошностью материала контролируемой детали при наличии в ней трещин, раковин и других дефектов. Если через такую деталь пропускать магнитный поток, то из-за дефектов магнитная проницаемость материала будет неодинаковой, что вызывает изменение магнитного потока по величине и направлению. Магнитные силовые линии не проходят через трещины и другие полые дефекты, а огибают их, что вызывает искажение магнитного поля над дефектами. Задача любого из рассматриваемых методов дефектоскопии состоит в обнаружении на поверхности детали с помощью определенного индикатора зон с искажением магнитного поля. В зависимости от способа обнаружения и индикации изменения магнитного потока различают следующие методы магнитной дефектоскопии: магнитопорошковый, магнитографический, магнитоаккустический, индукционный и др.

Методы магнитной дефектоскопии применяют преимущественно при массовом контроле однотипных деталей. Общий их недостаток состоит в невозможности определения характера обнаруженного дефекта. При необходимости решения этой задачи, рассмотренные методы дополняют другими, например, рентгеновским или лучевым методами дефектоскопии.

Магнитопорошковый метод. Он отличатся тем, что в качестве индикатора искажения магнитного потока используется ферромагнитный порошок. Для выявления дефектов контролируемую деталь после ее намагничивания или в присутствии намагничивающего поля покрывают слоем ферромагнитного порошка в сухом виде или в виде суспензии. Под действием магнитного поля частицы порошка располагаются по направлению силовых линий, концентрируясь в виде утолщения (валика) над местами расположения скрытых дефектов.

Технология дефектоскопии магнитопорошковым методом предусматривает выполнение следующих основных этапов: подготовка поверхности детали, ее намагничивание, нанесение на контролируемую поверхность магнитного порошка или суспензии, осмотр и размагничивание детали.

Подготовка детали к контролю включает в себя очистку ее поверхности от масла, грязи, ржавчины и зашлифовку при необходимости наждачной бумагой рисок и царапин. Чем меньше высота шероховатости контролируемой поверхности, тем выше чувствительность метода.

Для намагничивания используют постоянные магниты, а также постоянный ток (для выявления внутренних дефектов) и переменный ток (для выявления поверхностных дефектов). Ток для намагничивания получают от сварочных трансформаторов или аккумуляторов. Намагничивают детали последовательно 2-3 раза с продолжительностью по 1,5-2 с.

Можно также помещать деталь в соленоид или прокладывать по ней проводник. Эта схема полюсного намагничивания удобна для выявления дефектов, расположенных в поперечном направлении, у деталей типа валов и осей.

После контроля детали промывают в чистом трансформаторном масле и размагничивают, употребляя следующие способы: медленным перемещением намагниченной детали через катушку, питаемую переменным током обычной частоты; пропусканием переменного тока через размагничиваемую деталь; изменением направления постоянного тока, пропускаемого через деталь или катушку, с одновременным постепенным снижением силы тока. Деталь считается размагниченной, если к ней металлический порошок не пристает.

Магнитопорошковый способ дефектоскопии широко распространен благодаря сравнительной простоте выполнения, наглядности и надежности результатов контроля. Его недостатки: невозможность дефектации деталей из неферромагнитных материалов, непрерывный расход порошка при работе и необходимость размагничивания детали после проведения дефектации.

Магнитографический метод дефектоскопии основан на том, что в качестве индикатора искажения магнитного поля служит ферромагнитная пленка, которую после намагничивания детали плотно прижимают к контролируемому месту. Затем с нее устройствами типов ПНУ, ДМ, ПК осуществляют запись на магнитную пленку.

Магнитоиндукционный метод дефектоскопии основан на обнаружении искажения магнитного поля с помощью индикатора (искателя) индукционного типа. Прибор состоит из гальванометра, к клеммам которого присоединены две катушки с противоположно намотанными витками. При медленном перемещении катушек над намагниченной деталью в результате пересечения магнитных силовых линий витками катушек в них индуктируется ЭДС. Показания прибора изменяются при прохождении над дефектом, искажающим магнитное поле детали, что позволяет установить его месторасположение.

Магнитоакустический метод дефектоскопии отличается от рассмотренного выше тем, что вместо гальванометра индикатором наличия дефектов в детали служит звуковой прибор.

Электромагнитная дефектоскопия. Электромагнитный метод контроля основан на измерении взаимодействия электромагнитного поля вихревых токов, наводимых в поверхностном слое контролируемой детали, с переменным электромагнитным полем катушки преобразователя. Он позволяет выявить у деталей из токопроводящих материалов поверхностные и подповерхностные дефекты (трещины, пустоты, неметаллические включения, межкристаллическую коррозию и др.) шириной 0,1—0,2 мм и протяженностью более 1 мм, расположенные на расстоянии до 1 мм от поверхности детали.

По назначению электромагнитные преобразователи бывают трех типов: накладные, проходные и комбинированные. При контроле приборы накладного типа располагаются над проверяемой деталью, а при применении прибора проходного типа контролируемую деталь пропускают через него.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: