Полисахариды

  • декстрин
  • гликоген
  • крахмал
  • целлюлоза

Белки - главные «труженики» клетки — это природ­ные биополимеры, построенные из остатков 20 аминокис­лот. В состав макромолекул белков может входить от не­скольких десятков до сотен тысяч и даже миллионов ами­нокислотных остатков, причем свойства белка существенно зависят именно от порядка, в котором располагаются эти остатки друг за другом. Поэтому, очевидно, что число воз­можных белков практически не ограничено.

Аминокислотами называют органические соединения, в которых карбоксильная (кислотная) группа СООН и ами­ногруппа NH2. присоединены к одному и тому же атому углерода.

Рис.1 Структурная формула аминокислот

Строение такой молекулы описывается струк­турной формулой (рис.1), где R - радикал, разный для разных аминокислот. Таким образом, в состав аминокислот вхо­дят все четыре органогена С, О, Н, N, а в некоторые ради­калы может входить сера S.

По способности человека синтезировать аминокислоты из их предшественников они делятся на две группы:

  • Незаменимые: Триптофан, Фенилаланин, Лизин, Треонин, Метионин, Лейцин, Изолейцин, Валин, Аргинин, Гистидин;
  • Заменимые: Тирозин, Цистеин, Глицин, Аланин, Серин, Глутаминовая кислота, Глутамин, Аспарагиновая кислота, Аспарагин, Пролин

Незаменимые аминокислоты должны поступать в организм человека с пищей, так как они не синтезируются человеком, хотя некоторые заменимые аминокислоты синтезируются в организме человека в недостаточных количествах и тоже должны поступать с пищей.

Химические формулы 20 стандартных аминокислот:

Структуру белковой молекулы, поддерживаемую ковалентными связями между аминокислотными остатка­ми, называют первичной. Другими словами, первичная структура белка определяется простой последовательно­стью аминокислотных остатков. Эти остатки могут впол­не определенным образом размещаться в пространстве, образуя вторичную структуру. Наиболее характерной вто­ричной структурой является α-спираль, когда аминокис­лотные цепочки как бы образуют резьбу винта.

Одним из самых удивительных свойств макромолекул является то, что α-спирали с левой и правой «резьбой» встречаются в живой природе с существенно разной вероятностью: мак­ромолекул, «закрученных» вправо, почти нет. Асиммет­рию биологических веществ относительно зеркального отражения обнаружил в 1848 г. великий французский уче­ный Л. Пастер. Впоследствии выяснилось, что эта асим­метрия присуща не только макромолекулам (белкам, нук­леиновым кислотам), но и организмам в целом. Как воз­никла преимущественная спиральность макромолекул и как она в дальнейшем закрепилась в ходе биологической эволюции — эти вопросы до сих пор являются дискусси­онными и не имеют однозначного ответа.

Наиболее сложные и тонкие особенности структуры, отличающие один белок от другого, связаны с простран­ственной организацией белка, которую называют третич­ной структурой. Фактически речь идет о том, что спира­левидные цепочки аминокислотных остатков свернуты в нечто, напоминающее клубок ниток; В результате доволь­но длинные цепочки занимают сравнительно небольшой объем в пространстве. Характер свертывания в клубок от­нюдь не случаен. Напротив, он однозначно определен для каждого белка. Именно благодаря третичной структуре белок способен выполнять свои уникальные каталитиче­ские, ферментативные функции, когда в результате целенаправленного захватывания реагентов осуществляется их синтез в сложные химические соединения, сравнимые по сложности с самим белком. Ни одна из химических ре­акций, осуществляемых белками, не может происходить обычным образом.

Кроме третичной структуры, белок может иметь чет­вертичную структуру; когда имеет место структурная связь между двумя или несколькими белками. Фактиче­ски речь идет об объединении нескольких «клубков» из полипептидных цепочек.

Нуклеиновые кислоты (от лат. nucleus — ядро) — высокомолекулярные органические фосфорсодержащие соединения, биополимеры. Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Одна из основных аксиом биологии утверждает, что наследственная информация о структуре и функциях био­логического объекта передается из поколения в поколе­ние матричным путем, а носителями этой информации являются нуклеиновые кислоты.

Эти биополимеры на первый взгляд проще, чем белки. «Алфа­вит» нуклеиновых кислот состоит всего из четырех «букв», в роли которых выступают нуклеотиды — сахара-пентозы, к которым присоединено одно из пяти азотистых основа­ний: гуанин (Г), аденин (А), цитозин (Ц), тимин (Т) и урацил (У).

Аденин Гуанин Тимин Цитозин

Рис. 2 Структуры оснований, наиболее часто встречающихся в составе ДНК

В рибонуклеиновой кислоте (РНК) сахаром явля­ется углевод рибоза (С5Н10О5), а в дезоксирибонуклеиновой кислоте (ДНК) — углевод дезоксирибоза (С5Н10О4), который отличается от рибозы только тем, что около одно­го из атомов углерода ОН-группа заменена на атом водоро­да. Три из указанных азотистых оснований — Г, А и Ц — входят в состав и РНК, и ДНК. Четвертое азотистое осно­вание в этих кислотах разное — Т входит только в ДНК, а У— только в РНК. Связываются звенья нуклеотидов фосфодиэфирными связями остатка фосфорной кислоты Н3РО4.

Относительные молекулярные массы нуклеиновых кислот достигают значений 1500 000-2 000 000 и более. Вторичная структура ДНК была установлена метода­ми рентгеноструктурного анализа в 1953 г. Р. Франклин, М. Уилкинсом, Дж. Уотсоном и Ф. Криком. Оказалось, что ДНК образуют спирально за­крученные нити, причем азо­тистое основание одной нити ДНК связано водородными связями с определенным ос­нованием другой нити: аде­нин может быть связан толь­ко с тимином, а цитозин — только с гуанином (рис. 3). Такие связи называются комплементарными (допол­нительными). Отсюда следует, что поря­док расположения оснований в одной нити однозначно оп­ределяет порядок в другой нити. Именно с этим связано важнейшее свойство ДНК — способность к самовоспроиз­ведению (репликации). РНК не имеет двойной спиральной структуры и по­строена как одна из нитей ДНК. Различают рибосомную (рРНК), матричную (мРНК) и транспортную (тРНК). Они отличаются теми ролями, которые играют в клетках.

Рис. 3 Различные формы двойной спирали ДНК

Что же означают последовательности нуклеотидов в нуклеиновых кислотах? Каждые три нуклеотида (их на­зывают триплетами или кодонами) кодируют ту или иную аминокислоту в белке. Например, последователь­ность УЦГ дает сигнал на синтез аминокислоты серин. Сразу возникает вопрос: сколько различных троек можно получить из четырех «букв»? Легко сообразить, что та­ких троек может быть 43 = 64. Но в образовании белков может участвовать всего 20 аминокислотных остатков, значит, некоторые из них можно кодировать разными тройками, что и наблюдается в природе.

Например, лей­цин, серин, аргинин кодируются шестью тройками, пролин, валин и глицин — четырьмя и т. д. Это свойство триплетного генетического кода называется вырожденностью или избыточностью. Следует также отметить, что для всех живых организмов кодирование белков происходит одинаково (универсальность кодирования). В то же вре­мя последовательности нуклеотидов в ДНК не могут быть считаны иначе, как единственным способом (непе­рекрываемость кодонов).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: