Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Анализ смещенности выборочной средней и выборочной дисперсии




Выборочная средняя является несмещенной оценкой, а выборочная дисперсия - смещенной оценкой.

Пусть дана выборка x1, x2, …xn. Будем рассматривать выборочные значения как реализации случайных величин Х1, Х2, …Хn, одинаково распределенных по закону распределения генеральной совокупности, т.е. случайной величины Х. Это означает, что они имеют одно и тоже математическое ожидание Mx и дисперсию .

Математическое ожидание выборочной дисперсии не равно оцениваемой дисперсии генеральной совокупности . Чтобы «исправить» выборочную дисперсию, ее нужно умножить на дробь .

В результате получим «исправленную» выборочную дисперсию

.

Соответственно, «исправленным» выборочным квадратичным отклонением называется арифметический квадратный корень из «исправленной» выборочной дисперсии.

Теорема. Выборочная дисперсия равна среднему арифметическому квадратов значений выборки минус квадрат выборочной средней:

.





Дата добавления: 2015-04-23; просмотров: 851; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9102 - | 7224 - или читать все...

Читайте также:

 

18.206.13.39 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.