double arrow

Сущность выборочного наблюдения

Виды дисперсий в совокупности, разделенной на части. Правило сложения дисперсий

Таблица 4.1 - Показатели вариации

  Показатель Формула расчета показателя
Абсолютные Размах (4.1)
Среднее линейное отклонение (4.2) (4.3)
Дисперсия σ2 (4.4) (4.5)
Среднее квадратическое отклонение (4.6) (4.7)
относительные Коэффициент вариации (4.8)
Линейный коэффициент вариации (4.9)
Коэффициент осцилляции (4.10)

Относительные показатели строятся с учетом базы (в виде средней), выражаются в процентах и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации

. (4.11)

Существуют следующие виды дисперсий:

Общая дисперсиясовокупности

. (4.15)

Общая дисперсия отражает вариацию признака за счет всех факторов, действующих в данной совокупности.

Вариацию между группами за счет признака-фактора, положенного в основу группировки, отражает межгрупповая дисперсия, которая исчисляется как средний квадрат отклонений групповой средней от общей средней:

. (4.18)

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, т.е. вариацию между группами за счет признака-фактора, положенного в основу группировки.

Вариацию внутри каждой группы изучаемой совокупности отражает внутригрупповая дисперсия, которая исчисляется как средний квадрат отклонений значений признака х от частной средней :

или . (4.19)

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основу группировки.

Между представленными видами дисперсий существует определенное соотношение, которое известно как правило сложения дисперсий:

. (4.20)

Правило сложения дисперсий позволяет выявить зависимость результатов от определяющих факторов с помощью соотношения межгрупповой и общей дисперсий. Это соотношение называется эмпирическим коэффициентом детерминации2) и показывает долю вариации результативного признака под влиянием факторного.

. (4.21)

Эмпирическое корреляционное отношение (η) показывает тесноту связи между исследуемым явлением и группировочным признаком.

. (4.22)

η2 и η [0, 1]. (4.23)

Если связь отсутствует, то h = 0. В этом случае межгрупповая дисперсия равна нулю (δ2=0), т.е. все групповые средние равны между собой и межгрупповой вариации нет. Это означает, что группировочный признак не влияет на вариацию исследуемого признака х.

Если связь функциональная, то h = 1. В этом случае дисперсия групповых средних равна общей дисперсии (). Это означает, что группировочный признак полностью определяет характер изменения изучаемого признака.

Чем больше значение корреляционного отношения приближается к единице, тем полнее (сильнее) корреляционная связь между признаками (таблица 4.3).

Таблица 4.3 - Оценка связи между признаками (шкала Чэддока)

Значение Характер связи Значение Характер связи
η = 0 Отсутствует 0,5 ≤ η < 0,7 Заметная
0 < η < 0,2 Очень слабая 0,7 ≤ η < 0,9 Сильная
0,2 ≤ η < 0,3 Слабая 0,9 ≤ η < 1 Весьма сильная
0,3 ≤ η < 0,5 Умеренная η = 1 Функциональная

ТЕМА 5. Выборочное наблюдение в статистике

Наиболее широко распространенным видом несплошного наблюдения является выборочное наблюдение, при котором обследуются не все единицы изучаемой совокупности, а лишь определенным образом отобранная их часть.

Вся подлежащая изучению совокупность объектов (наблюдений) называется генеральной совокупностью. Выборочной совокупностью или выборкой называется часть генеральной совокупности, отобранная для изучения свойств обеспечивающая репрезентативность. Отбор из генеральной совокупности проводится таким образом, чтобы на основе выборки можно было получить достаточно точное представление об основных параметрах совокупности в целом. Главное требование, которому должна отвечать выборочная совокупность, — это требование ее репрезентативности, т.е. представительности.

Ошибкой статистического наблюдения считается величина отклонения между расчетным и фактическим значениями признаков изучаемых объектов.

Основные этапы выборочного наблюдения;

1) определение цели, задач и составление программы наблюдения;

2) формирование выборки;

3) сбор данных на основе разработанной программы;

4) анализ полученных результатов и расчет основных характеристик выборочной совокупности;

5) расчет ошибки выборки и распространение ее результатов на генеральную совокупность.

Различают виды выборки:

1) случайная (собственно-случайная);

2) механическая (например, каждый 10, 20 и т.д.);

3) типическая (стратифицированная), когда генеральная совокупность разбита на группы и в каждой группе обследуются по нескольку объектов));

4) серийная (гнездовая), когда случайным образом отбираются целые серии.

Наиболее простой способ формирования выборочной совокупности – собственно случайный отбор. Теоретические основы выборочного метода, первоначально разработанные применительно к собственно случайному отбору, используют и для определения ошибок выборки при других способах наблюдения.

Собственно случайный отбор может быть повторным и бесповторным. При повторном отборе каждая единица, отобранная в случайном порядке из генеральной совокупности, после проведения наблюдения возвращается в эту совокупность и может быть вновь подвергнута обследованию. На практике такой способ отбора встречается редко. Гораздо более распространен собственно случайный бесповторный отбор, при котором обследованные единицы в генеральную совокупность не возвращаются и не могут быть обследованы повторно. При повторном отборе вероятность попадания в выборку для каждой единицы генеральной совокупности остается неизменной. При бесповторном отборе она меняется, но для всех единиц, оставшихся в генеральной совокупности после отбора из нее нескольких единиц, вероятность попадания в выборку одинакова.


Сейчас читают про: