double arrow

Непрерывность функции нескольких переменных

Пусть функция нескольких переменных задана в области , точка принадлежит .

Определение.Функция непрерывна в точке , если ее предел в этой точке равен значению функции в самой точке:

.

Это означает, что близким к точкам соответствуют близкие к значения функции .

Определение.Функция непрерывна в области , если она непрерывна в каждой точке этой области.

Для функции двух переменных это геометрически означает, что поверхность графика функции не имеет скачков, разрывов, является непрерывной в интуитивном смысле.

Аналогично определяется непрерывность в точке и области для функции большего числа переменных.

Теорема (критерий непрерывности в терминах приращений). Для того, чтобы функция была непрерывна в точке , необходимо и достаточно, чтобы бесконечно малым (стремящимся к нулю) приращениям независимых переменных и соответствовало бесконечно малое приращение функции: .

Доказательство. По свойствам предела:

. ▄






Сейчас читают про: