Область применения и принцип действия

Дифференциальная защита, выполненная на принципе сравнения токов на входе и выходах, применяется в качестве основной быстродействующей защиты трансформаторов и автотрансформаторов. Защита абсолютно селективна, реагирует на повреждения в обмотках, на выводах и в соединениях с выключателями, и действует на отключение трансформатора со всех сторон без выдержки времени. Зона действия дифференциальной защиты трансформатора (ДЗТ) ограничивается местом установки трансформаторов тока, и включает в себя ошиновку СН, НН и присоединение ТСН, включенного на шинный мост НН. Ввиду ее сравнительной сложности, дифференциальная защита устанавливается в следующих случаях (Л1):

на одиночно работающих трансформаторах (автотрансформаторах) мощностью 6300 кВА и выше;

на параллельно работающих трансформаторах (автотрансформаторах) мощностью 4000 кВА и выше;

- на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не обеспечивает необходимой чувствительности при КЗ на выводах высшего напряжения ч < 2), а максимальная токовая защита имеет выдержку времени более 0,5 сек.

При параллельной работе трансформаторов (автотрансформаторов) дифференциальная защита обеспечивает не только быстрое, но и селективное отключение поврежденного трансформатора (автотрансформатора), что поясняется на рис. 8.2. Если параллельно работающие трансформаторы Т1и Т2оснащены только максимальными токовыми защитами, то при повреждении на вводах низшего напряжения трансформатора, например в точке К, подействуют максимальные токовые защиты обоих трансформаторов, а так как их выдержки времени одинаковы, отключатся оба трансформатора. Дифференциальная защита, действующая без выдержки времени, обеспечивает в рассмотренном случае отключение только поврежденного трансформатора. Для выполнения дифференциальной защиты трансформатора (автотрансформатора) устанавливаются ТТ со стороны всех его обмоток, как показано на рис. 8.2 для двухобмоточного трансформатора. Вторичные обмотки ТТ соединяются в дифференциаль­ную схему и параллельно к ним подключается токовое реле. Аналогично выполняется дифференциальная защита автотрансформатора. При рассмотрении принципа действия дифференциальной защиты условно принимается, что защищаемый трансформатор имеет коэффициент трансформации, равный единице, одинаковое соединение обмоток и одинаковые ТТ с обеих сторон.

При прохождении через трансформатор сквозного тока нагрузки или КЗ ток в реле равен: Iр=I1 - I2

При принятых выше условиях и пренебрегая током намагничивания трансформатора, который в нормальном режиме имеет малое значение, можно

считать, что первичные токи равны II=III и, следовательно, вторичные токи I1 = I2

С учетом этого: Iр=I1 - I2=0

Рис. 8.2 Прохождение тока КЗ и действие МТЗ при повреждении одного из параллельно работающих трансформаторов Рис. 8.3 Принцип действия диф. защиты трансформатора: а – токораспределение при сквозном КЗ; б – то же при КЗ в трансформаторе (в зоне действия диф. защиты)

Таким образом, если схема дифференциальной защиты выполнена правильно и ТТ имеют точно совпадающие характеристики, то при прохождении через трансформатор тока нагрузки или внешнего КЗ ток в реле отсутствует, и дифференциальная защита на такие режимы не реагирует.

Практически вследствие несовпадения характеристик ТТ вторичные токи не равны I1 ≠I2 поэтому в реле проходит ток небаланса, т. е.

Для того чтобы дифференциальная защита не подействовала от тока небаланса, ее ток срабатывания должен быть больше этого тока, т. е.

Iс.з.=kн Iр.нб (8.1)


При КЗ в трансформаторе, или любом другом месте между ТТ, направление токов III и I2 изменится на противоположное, как показано на рис. 8.3, б. При этом ток в реле станет равным

Таким образом, при КЗ в зоне дифференциальной защиты в реле проходит полный ток КЗ, деленный на коэффициент трансформации трансформаторов тока. Под влиянием этого тока защита срабатывает и производит отключение поврежденного трансформатора.

Особенности, влияющие на выполнение дифференциальной защиты трансформаторов:

- Наличие намагничивающего тока, проходящего только со стороны источника питания

Даже в том случае, когда трансформатор имеет коэффициент трансформации, равный еди­нице, и одинаковое соединение обмоток, ток со стороны источника питания больше тока со стороны нагрузки на значение намагничивающего тока. Намагничивающий ток в нормальном режиме составляет примерно 1÷5% номинального тока трансформатора и поэтому вызывает лишь некоторое увеличение тока небаланса. Иные явления происходят при включении холостого трансформатора под напряжение, или при восстановлении напряжения после отключения КЗ.

В этих случаях в обмотке трансформатора со стороны источника питания возникает бросок намагничивающего тока, который в первый момент времени в 5÷8 раз превышает но­минальный ток трансформатора, но быстро, в течение времени менее 1 сек, затухает до значения порядка 5-10% номинального тока.

- Неравенство вторичных токов и разнотипность трансформаторов тока

Поскольку у трансформаторов токи со стороны обмоток высшего, среднего и низшего напряжений не равны, трансформаторы тока, выбираемые по номинальным токам обмоток, имеют разные коэффициенты трансформации и различное конструктивное выполнение. Вследствие этого они имеют различные характеристики и погрешности.

Номинальные токи обмоток трансформаторов, как правило, не совпадают со шкалой номинальных токов ТТ. Поэтому при выборе ТТ принимается трансформатор тока, номинальный ток которого является ближайшим большим по отношению к номинальному току обмотки трансформатора. Иногда и этого сделать не удается, так как на выбор трансформаторов тока влияют и другие соображения. Таким образом, вследствие неравенства вторичных токов в плечах дифференциальной защиты в дифференциальном реле при номинальной нагрузке трансформатора проходит ток небаланса, равный:

Поэтому для снижения тока небаланса, вызванного неравенством вторичных токов ТТ дифференциальной защиты, производится выравнивание этих токов путем включения специальных промежуточных автотрансформаторов тока, или путем использования выравнивающих обмоток дифференциальных реле. В цифровых реле такое выравнивание производится ма­тематическим путем.

- Неодинаковые схемы соединения обмоток трансформаторов

При неодинаковых схемах соединения обмоток, например Y/Δ, токи со стороны обмотки, соединенной в звезду, и токи со стороны обмотки, соединенной в треугольник, оказываются сдвинутыми относительно друг друга на некоторый угол, который зависит от схемы соединения обмоток. Для обычно применяемой группы Y/Δ -11 вторичный ток опережает первичный на угол 30°. Угловой сдвиг токов создает небаланс в реле дифференциальной защиты, который нельзя компенсировать подбором витков. Компенсация углового сдвига производится путем специального соединением вторичных обмоток трансформаторов тока. Для этого на стороне звезды трансформаторы тока соединяются в треугольник, а на стороне треугольника - в звезду (см. рис. 8.4).

При таком соединении вторичных обмоток ТТ, как показано на рис. 8.4, в трансформаторах тока ТА1, вторичные обмотки которых соединены в треугольник, создается сдвиг токов на такой же угол, как и в соединенной в треугольник обмотке НН трансформатора, что и обеспечивает совпадение фаз вторичных токов.

Современные цифровые защиты (фирм ABB, SIEMENS, ALSTOM, GE) получают разность фазных токов математическим путем. У таких защит трансформаторы тока со всех сторон соединяются в звезду, а группа соединений трансформатора и полярность ТТ вводится в реле в виде уставки. Соединение в звезду выгоднее в части величины нагрузки на трансформаторы тока (при соединении трансформаторов тока в треугольник нагрузка на трансформаторы тока вырастает в 3 раза).

Рис. 8.4 Прохождение токов в схеме диф. защиты трансформатора с соединением обмоток Y/Δ

Соединение трансформаторов тока в треугольник на стороне трансформатора, где первичные обмотки соединены в звезду, имеет и преимущество. Если нейтраль трансформатора заземлена, то при замыкании на землю протекает ток от заземленной нейтрали к месту КЗ. При установке трансформаторов тока только на выводах и схеме соединения трансформаторов тока – «звезда» протекает несбалансированный ток нулевой последовательности, который при схеме соединения ТТ – «треугольник» замыкается внутри треугольника и в реле не попадает. Таким образом, состояние нейтрали соединенной в звезду обмотки трансформатора не влия­ет на работу дифзащиты. Цифровые защиты исключают влияние тока нулевой последовательности математическим путем, поэтому, трансформаторы тока можно соединить в звезду.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: