double arrow

Многопроцессорные вычислительные системы – назначение, область применения

1

В настоящее время сфера применения многопроцессорных вычислительных систем (МВС) непрерывно расширяется, охватывая все новые области в самых различных отраслях науки, бизнеса и производства. Стремительное развитие кластерных систем создает условия для использования многопроцессорной вычислительной техники в реальном секторе экономики. Если традиционно МВС применялись в основном в научной сфере для решения вычислительных задач, требующих мощных вычислительных ресурсов, то сейчас, из-за бурного развития бизнеса резко возросло количество компаний, отводящих использованию компьютерных технологий и электронного документооборота главную роль. В связи с этим непрерывно растет потребность в построении централизованных вычислительных систем для критически важных приложений, связанных с обработкой транзакций, управлением базами данных и обслуживанием телекоммуникаций. Можно выделить две основные сферы применения описываемых систем: обработка транзакций в режиме реального времени (OLTP, on-line transaction processing) и создание хранилищ данных для организации систем поддержки принятия решений (Data Mining, Data Warehousing, Decision Support System). Система для глобальных корпоративных вычислений — это, прежде всего, централизованная система, с которой работают практически все пользователи в корпорации, и, соответственно, она должна все время находиться в рабочем состоянии. Как правило, решения подобного уровня устанавливают в компаниях и корпорациях, где любые, даже самые кратковременные, простои сети могут привести к громадным убыткам. Поэтому для организации такой системы не подойдет обыкновенный сервер со стандартной архитектурой, вполне пригодный там, где не стоит жестких требований к производительности и времени простоя. Высокопроизводительные системы для глобальных корпоративных вычислений должны отличаться такими характеристиками, как повышенная производительность, масштабируемость, минимально допустимое время простоя.




Наряду с расширением области применения, по мере совершенствования МВС происходит усложнение и увеличение количества задач в областях, традиционно использующих высокопроизводительную вычислительную технику. В настоящее время выделен круг фундаментальных и прикладных проблем, объединенный понятием "Grand challenges", эффективное решение которых возможно только с использованием сверхмощной вычислительных ресурсов. Этот круг включает следующие задачи:

- Предсказания погоды, климата и глобальных изменений в атмосфере
- Науки о материалах
- Построение полупроводниковых приборов
- Сверхпроводимость
- Структурная биология
- Разработка фармацевтических препаратов
- Генетика
- Квантовая хромодинамика
- Астрономия
- Транспортные задачи
- Гидро- и газодинамика
- Управляемый термоядерный синтез
- Эффективность систем сгорания топлива
- Геоинформационные системы
- Разведка недр
- Наука о мировом океане
- Распознавание и синтез речи
- Распознавание изображений



Главной отличительной особенностью многопроцессорной вычислительной системы является ее производительность, т.е. количество операций, производимых системой за единицу времени. Различают пиковую и реальную производительность. Под пиковой понимают величину, равную произведению пиковой производительности одного процессора на число таких процессоров в данной машине. При этом предполагается, что все устройства компьютера работают в максимально производительном режиме. Пиковая производительность компьютера вычисляется однозначно, и эта характеристика является базовой, по которой производят сравнение высокопроизводительных вычислительных систем. Чем больше пиковая производительность, тем теоретически быстрее пользователь сможет решить свою задачу. Пиковая производительность есть величина теоретическая и, вообще говоря, не достижимая при запуске конкретного приложения. Реальная же производительность, достигаемая на данном приложении, зависит от взаимодействия программной модели, в которой реализовано приложение, с архитектурными особенностями машины, на которой приложение запускается.

Существуют два способа оценки пиковой производительности компьютера. Один из них опирается на число команд, выполняемых компьютером в единицу времени. Единицей измерения, как правило, является MIPS (Million Instructions Per Second). Производительность, выраженная в MIPS, говорит о скорости выполнения компьютером своих же инструкций. Но, во-первых, заранее не ясно, в какое количество инструкций отобразится конкретная программа, а, во-вторых, каждая программа обладает своей спецификой, и число команд от программы к программе может меняться очень сильно. В связи с этим данная характеристика дает лишь самое общее представление о производительности компьютера.



Другой способ измерения производительности заключается в определении числа вещественных операций, выполняемых компьютером в единицу времени. Единицей измерения является Flops (Floating point operations per second) – число операций с плавающей точкой, производимых компьютером за одну секунду. Такой способ является более приемлемым для пользователя, поскольку последний знает вычислительную сложность своей программы и, пользуясь этой характеристикой, может получить нижнюю оценку времени ее выполнения.

Однако пиковая производительность получается при работе компьютера в идеальных условиях, т.е. при отсутствии конфликтов при обращении к памяти при равномерной загрузке всех устройств. В реальных условиях на выполнение конкретной программы влияют такие аппаратно-программные особенности данного компьютера, как: особенности структуры процессора, системы команд, состав функциональных устройств, реализация ввода/вывода, эффективность работы компиляторов.

Одним из определяющих факторов является время взаимодействия с памятью, которое определяется ее строением, объемом и архитектурой подсистем доступа в память. В большинстве современных компьютеров организации наиболее эффективного доступа к памяти используется так называемая многоуровневая иерархическая память. В качестве уровней используются регистры и регистровая память, основная оперативная память, кэш-память, виртуальные и жесткие диски, ленточные роботы. При этом выдерживается следующий принцип формирования иерархии: при повышении уровня памяти скорость обработки данных должна увеличиваться, а объем уровня памяти - уменьшаться. Эффективность использования такого рода иерархии достигается за счет хранения наиболее часто используемых данных в памяти верхнего уровня, время доступа к которой минимально. А поскольку такая память обходится достаточно дорого, ее объем не может быть большим. Иерархия памяти относится к тем особенностям архитектуры компьютеров, которые оказывают огромное значение для повышения их производительности.

Для того, чтобы оценить эффективность работы вычислительной системы на реальных задачах, был разработан фиксированный набор тестов. Наиболее известным из них является LINPACK – программа, предназначенная для решения системы линейных алгебраических уравнений с плотной матрицей с выбором главного элемента по строке. LINPACK используется для формирования списка Top500 – пятисот самых мощных компьютеров мира.

В настоящее время большое распространение получили тестовые программы, взятые из разных предметных областей и представляющие собой либо модельные, либо реальные промышленные приложения. Такие тесты позволяют оценить производительность компьютера действительно на реальных задачах и получить наиболее полное представление об эффективности работы компьютера с конкретным приложением.



1




Сейчас читают про: