Краткая история исследований атомного ядра

Глава 6. Нуклоны и атомные ядра

Изыскать модель и детерминистскую механику индивидуальных

микрообъектов, допускающую в качестве объективной

статистической механики обычную квантовую механику

Жан Поль Вижье [1]

Краткая история исследований атомного ядра

Существование атомного ядра было открыто английским исследователем Э.Резерфордом в 1911 г. [2]. Проводя опыты по пропусканию альфа-частиц, излучаемых естественным радиоактивным источником, через тонкую фольгу различных веществ, он обнаружил, что альфа-частицы чаще, чем это предполагалось, рассеиваются на большие углы. Резерфорд правильно истолковал этот факт как наличие в атоме положительно заряженного ядра, имеющего существенно меньшие размеры, чем сам атом. До Резерфорда в атомистике господствовали представления Дж.Томсона, согласно которым положительный заряд атома считался равномерно распределенным по всему объему атома, а электроны были вкраплены более или менее равномерно в этот объем, как изюминки в тесто. В 1919 г. Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны – частицы с единичным положительным зарядом и массой, в 1840 раз превосходящей массу электрона.

Ко времени открытия атомного ядра были известны только две элементарные частицы – электрон и протон. В соответствии с этим считалось вероятным, что атомное ядро состоит из них. Представление о протоне возникло в начале ХХ века в виде гипотезы о том, что все ядра состоят из ядер атомов водорода. В 1919–1920 гг. Резерфорд экспериментально наблюдал ядра водорода, выбитые из других элементов альфа-частицами, он же в начале 20-х годов ввел термин «протон» [2]. Однако в конце 20-х годов протонно-электронная гипотеза столкнулась с серьезной трудностью, получившей название «азотной катастрофы»: спин ядра азота, имеющий в своем составе, как предполагалось, 21 частицу - 14 протонов и 7 электронов, каждая из которых имела спин ½, в совокупности должен был иметь спин ½, а согласно данным по измерению оптических молекулярных спектров спин оказался равным 1.

Состав атомного ядра был выяснен после открытия учеником Резерфорда Дж.Чедвиком (1932) нейтрона [3], масса которого оказалась близкой к массе протона, электрический заряд отсутствовал, а спин оказался равным ½. Чедвик установил, что обнаруженное немецкими физиками Боте и Бекером проникающее излучение, возникающее при бомбардировке атомных ядер, в частности бериллия, α-частицами, состоит из незаряженных частиц с массой, близкой к массе протона.

Идея о том, что атомное ядро состоит из протонов и нейтронов, была впервые высказана в печати Д.Д.Иваненко (1932) [4] и непосредственно вслед за этим развита В.Гейзенбергом [5]. Протоны и нейтроны были объединены общим названием нуклоны. Теории протона и нейтрона, а также атомного ядра, состоящего из протонов и нейтронов, посвящено большое количество работ [6–26].

В дальнейшем теория атомного ядра стала усложняться. Были открыты новые частицы, более тяжелые, чем нуклоны, которые предположительно тоже должны входить в состав атомных ядер. Эти частицы были обнаружены в ядерных реакциях при бомбардировке ядер частицами высоких энергий.

В соответствии с теорией относительности и квантовой механикой было решено, что для изучения атомного ядра необходимо бомбардировать их частицами высоких энергий, для чего были построены ускорители высоких энергий. В 70-х годах энергии частиц, разогнанных на ускорителях, составили десятки и сотни миллиардов электрон-вольт (ГэВ). Считается и сейчас, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темпы получения все новых «элементарных частиц». Были получены тяжелые античастицы – антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 г. был открыт самый тяжелый гиперон с массой около двух масс протона. В 60-х годах на ускорителях было открыто большое число крайне неустойчивых частиц, получивших название «резонансов», массы большинства из них превышают массу протона. В 70-х годах число вновь открытых частиц с самыми неожиданными свойствами резко увеличилось. Для описания этих новых свойств оказалось необходимым ввести ряд новых понятий, таких как «странность», «очарование» и т.п.

В настоящее время стала модной теория кварков [23], согласно которой тяжелые частицы построены из различных комбинаций «истинно элементарных» частиц – трех кварков и трех антикварков, каждый из которых имеет массу порядка пяти протонных масс. Соединение кварков между собой приводит к преобразованию масс кварков в энергию связи, в результате, соединившись, например в протон, три кварка, имеющий каждый по 5 протонных, а в сумме 15 протонных масс, сохраняют в виде массы только одну протонную массу, остальные 14 протонных масс преобразуются в энергию связей кварков между собой. Правда, в экспериментах кварков так и не нашли…

Наряду с рассмотрением атомного ядра, как состоящего из элементарных частиц, был выдвинут ряд ядерных моделей, т.е. приближенных методов описания, основанных на отождествлении ядра с какой-либо системой, свойства которой либо хорошо изучены, либо поддаются сравнительно простому теоретическому анализу. Таковы, например, ядерные модели вырожденного ферми-газа, жидкой капли, ротатора (волчка), оболочечная модель и др.

Для объяснения ядерных сил, связывающих нуклоны в ядрах (сильное ядерное взаимодействие), также использованы различные модели. В 1935 г. японский физик Х.Юкава высказал гипотезу, согласно которой нуклоны обмениваются друг с другом некоторой частицей, обладающей массой и являющейся переносчиком ядерных сил [24]. Подобная гипотеза независимо выдвигалась И.Е.Таммом и Д.Д.Иваненко. Такая частица была обнаружена в 1947 г. и названа π-мезоном. Но в дальнейшем выяснилось, что нужно привлечь для объяснения сильного взаимодействия и ряд других частиц. Считается, что определенный вклад в сильное взаимодействие дают и сами нуклоны. Частицы, участвующие в сильном взаимодействии (адроны), окружены облаками мезонов. Р.Фейнманом была выдвинута модель «партронов», в которой предполагается, что адроны в неупругих соударениях ведут себя как совокупность точечных частиц –«партронов», некоторым образом распределенных по импульсам. В качестве партронов можно рассматривать кварки, считая, что адроны помимо трех кварков содержат также облако кварков-антикварков.

В связи с изложенным целесообразно дополнительно вспомнить об истории открытия нейтрино – электрически нейтральной элементарной частицы, имеющей массу покоя, много меньшую, чем масса покоя электрона. Открытие нейтрино, по мнению физиков, принадлежит к числу наиболее ярких и вместе с тем трудных страниц в физике ХХ в.

Впервые в экспериментальной физике нейтрино проявилось в 1914 г., когда английский физик Дж.Чедвик обнаружил, что электроны, испускаемые при β-распаде атомных ядер, имеют непрерывный энергетический спектр. Это явление находилось в явном противоречии с теорией квантов и приводило к нарушению закона сохранения энергии.

В 1930 г. швейцарский физик В.Паули в письме участникам семинара в Тюрингеме сообщил о своей «отчаянной попытке» спасти закон сохранения энергии. Паули высказал гипотезу о существовании новой электрически нейтральной сильно проникающей частицы, обладающей малой массой, благодаря которой и создается впечатление о несоблюдении закона сохранения энергии. После открытия в 1932 г. нейтрона итальянский физик Э.Ферми предложил назвать такую частицу «нейтрино» (маленький нейтрон). Впоследствии нейтрино было обнаружено, и нейтринное излучение использовалось как инструмент изучения внутризвездных процессов.

В разнообразных и многочисленных экспериментах, проведенных на ускорителях высоких энергий, получены различные и многообразные данные по сильному взаимодействию частиц, а также по получению самых разнообразных «элементарных частиц» вещества, общее число которых колеблется от 200 до 2000, смотря как считать и что учитывать. Однако все эти экспериментальные результаты не слишком хорошо сопрягаются друг с другом, поэтому теоретикам приходится все время усложнять свои модели и теории, что, как они считают, объясняется сложностью предмета исследования.

С сожалением следует констатировать, что над всеми исследованиями в области атомного ядра висит философская основа и методологическая тень теории относительности Эйнштейна и квантовой механики. Теория относительности, выбросив эфир, лишила «элементарные» частицы вещества строительного материала и тем самым структуры. Частицы не имеют не только никакого механизма, объясняющего их свойства – магнитного момента, спина, электрического заряда и т.д., но даже размеров. Все их свойства взялись ниоткуда, они врожденные. Физической основы лишились и ядерные взаимодействия. А поскольку нет никакой среды, через которую могли бы взаимодействовать частицы, то вся логика исследователей была направлена на поиски частиц, которые могли бы как-то объяснить результаты исследований, которых было немало. Однако никому не пришло в голову, что все это многообразие частиц, открытое с помощью ускорителей высоких энергий, не содержится в веществе, а получаются в самом эксперименте, что все это осколки или комбинации осколков вещества, созданных при бомбардировке мишеней, и этих осколков может быть получено бесчисленное множество. Практика это подтверждает.

Приходится констатировать также и то, что в моделях и теориях атомного ядра и сильных взаимодействий наглядно продемонстри-рованы философская беспомощность большинства теорий и отсутствие научной методологии. Большим недостатком существующих теорий «элементарных частиц» является отсутствие каких-либо представлений о строении и структуре частиц, а также о природе полей, окружающих их, и никого это не волнует. Совсем не рассматриваются физические причины, по которым все эти многочисленные частицы имеют все свои свойства и почему они способны трансформироваться друг в друга. Непонимание внутреннего механизма привело к многочисленным попыткам получить сведения о микромире путем наращивания мощностей установок в слепой надежде на случай. Но установки, на которые затрачены громадные средства, созданы, а ясности в строении материи практически не прибавилось.

Все это достойно сожаления. Не стоит удивляться поэтому, что программы подобных исследований на ускорителях высоких энергий в 1999 г. были закрыты практически во всем мире, по всей вероятности, вследствие своей бесполезности. Путь, по которому шли все эти исследования, оказался тупиковым.

6.2. Определение эфиродинамических параметров протона

Эфиродинамика с самого начала предполагает наличие строительного материала, из которого состоят все элементарные частицы вещества. Это сразу же позволяет поставить вопрос об их структуре и о внутреннем движении материи, результатом которого являются все внешние свойства микрочастиц.

Наблюдения Бюраканской обсерватории (Амбарцумян) за активностью ядра спиральной Галактики выявили истечение протонно-водородного газа из ее ядра, а также наличие скопления молодых звезд вокруг ядра. Это позволяет высказать определенную уверенность в том, что именно в ядре спиральной галактики и зарождаются протоны, из которых в дальнейшем формируются звезды, а затем в процессе эволюции в них создаются и все остальные элементы.

Протон является основной микрочастицей всего мироздания на уровне вещества. Это следует из того, что протон – основа атома водорода, он входит в состав ядер всех веществ, причем, как оказалось, нейтрон это тот же протон в одном из его состояний. Поэтому можно полагать, что более 99% массы всего видимого вещества в нашей Галактике, а вероятно, и во Вселенной состоит из протонов.

Поскольку единственным видом движения эфира, способным в замкнутом объеме собрать уплотненный эфир, являются тороидальные вихри, структура протона должна быть отождествлена именно с такой структурой.

Несмотря на не очень четкую классификацию вихревых и турбулентных течений, существующих ныне в гидромеханике, можно отметить существенную зависимость характера течений жидких и газовых сред от значений числа Рейнольдса. В этой связи представляет интерес определить значения параметров движения эфирных потоков в нашей Галактике.

Как показано ниже, эфирные потоки движутся по двум рукавам спиральной Галактики навстречу друг другу, встречаясь в центральной части – ее ядре. В результате соударения и перемешивания струй эфира и образуются замкнутые тороидальные вихри. Как показывает опыт Жуковского с каплей, падающей в воду, тороидальный кольцевой вихрь образуется сразу же после соприкосновения капли с водой. Образовавшийся тороид начинает испускать струи, делиться и образовывать несколько более мелких тороидальных колец, и так несколько раз (см. рис. 5.12). В отличие от вихреобразования в жидкости, при образовании в эфире вихревое кольцо сжимается давлением окружающего их эфира, а далее снова делится на все более мелкие тороиды. Этот процесс уплотнения и деления происходит многократно, до тех пор, пока стенки образовавшегося протона не уплотнятся до некоторой критической величины, при которой деление прекращается. Образованные на последнем этапе тороидальные винтовые вихри уплотненного эфира и суть протоны.

Поскольку число Рейнольдса для устойчивого вихреобразования должно составлять не менее 2000, то при скорости поступления эфира по одному рукаву 10 тыс. км/с толщина пограничного слоя окажется равной всего лишь

d = Re χ / v = 2000∙3,5∙ 10–2/ 107 = 2∙ 10–8 м. (6.1)

Таким образом, в пределах струй эфира, ширина которых исчисляется световыми годами, возможно массовое образование вихрей, что и наблюдается.

В пересчете на плотность эфира в околоземном пространстве на один протон произойдет затрата эфира, соответствующая кубу со стороной 8∙10–6 м, но в ядре Галактики, где плотность эфира выше не менее, чем на 3–5 порядков, этот куб может иметь сторону не более, чем 10–7 м. Таким образом, условия для образования протонов в ядре Галактики имеются.

В соответствии с представлениями эфиродинамики протон есть тороидальный винтовой вихрь с уплотненными стенками, структура которого соответствует некоторому подобию трубы, замкнутой в кольцо. Вихревое движение, однажды возникшее в среде, будет способствовать появлению вихрей в других областях среды того же направления, что и уже созданный вихрь. То же касается и винтового движения. Созданные в ядре Галактики вихри одного какого-то знака винтового движения будут способствовать тому, что во всем пространстве ядра будут создаваться винтовые тороиды одного и того же винтового знака – либо только правовинтовые, либо только левовинтовые, какого именно знака предстоит выяснить в будущем. Но то же относится и ко всей Вселенной. Поэтому в пределах Вселенной вряд ли могут существовать области на основе так называемой «антиматерии», т.е. на основе антипротонов. Такие антипротоны могут быть созданы лишь искусственно.

Хотя общая форма протона приближается к шаровой, она все же таковой не является. Поэтому у протона не может быть полной симметрии ни электрического, ни магнитного полей, их симметрия возможна только относительно оси, проходящей через центр протона.

На рис. 6.1 представлена структура протона и даны эпюры плотностей, а также эпюры тороидальной и кольцевой скоростей.

Из такого представления сразу же вытекает наличие в протоне керна – стенок трубы, находящихся в центре протона, а также небольшого осевого отверстия внутри протона. Внутри трубы в результате действия центробежной силы давление эфира должно быть понижено по сравнению с внешним давлением эфира, хотя плотность эфира может быть и более высокой, если температура эфира внутри протона ниже температуры внешней среды. К такому предположению приводит соображение о том, что внешние стенки протона должны также иметь пониженную температуру относительно внешнего эфира из-за наличия на его поверхности градиентного течения.

Поскольку сечение потока в центре тела протона имеет для тороидального потока существенно меньшую площадь, чем сечение потока в наружных стенках протона, то скорость потока в центре будет существенно больше, чем в наружных стенках. Инерционные силы заставят тело протона вытянуться в центре вдоль оси, а с противоположной стороны в связи с нарастанием скорости должна образоваться воронка. В целом это приведет к тому, что форма протона будет напоминать форму купола («маковки») православной церкви.

Переход потока эфира из внутренней части тороида в наружные стенки сопровождается снижением скорости потока в тороидальном направлении. Но потоку некуда отдать свою энергию движения, потому что внешний эфир, окружающий протон, имеет малую плотность. Это означает, что поток эфира по выходе из центральной части вынужден изменить свое направление движение, сохраняя общее значение скорости: тороидальное направление преобразуется в кольцевое вокруг главной оси протона. В результате в наружных стенках протона образуется винтовое движение – одновременное существование тороидального и кольцевого (вокруг главной оси тороида) движений.

Рис. 6.1. Структура протона: а) поперечный разрез; б) эпюра плотности; в) эпюра температур; г) эпюра скорости тангенциального потока; д) эпюра скорости кольцевого потока

Тороидальный винтовой вихрь выдувает из своей середины – центрального канала – винтовой поток эфира. В центре протона поток эфира практически не имеет градиента скоростей, зато он сжат, и это означает, что температура эфира в этом месте и вязкость повышены, они имеют хорошее сцепление с телом самого протона, и поэтому протон работает как двигатель, перегоняющий сквозь себя окружающий его эфир. Поступательное движение этого потока преобразуется в тороидальное движение эфира вокруг тела протона. Это движение во внешнем относительно протона пространстве подчинено закону Био-Савара, т.е. тому же закону, что и магнитное поле протона, его скорость убывает обратно пропорционально кубу расстояния.

Убывание скорости кольцевого движения потоков эфира, размываемого тороидальным движением пропорционально квадрату расстояния.

В тороидальном движении один объем газа вовлекает другой за счет прямого на него давления, в кольцевом же соседние слои захватываются за счет вязкости эфира. Это приводит к тому, что тороидальное движение будет охватывать все окружающее пространство, кольцевое же движение может иметь два состояния – охватывающее окружающее пространство или локализуемое в пределах некоторого пограничного слоя, в котором вследствие большого значения градиента скорости вязкость и температура значительно снижены.

Поскольку, как это будет показано ниже, тороидальное движение эфира воспринимается как магнитное поле, то этим и объясняется тот факт, что магнитным полем, а следовательно, и магнитным моментом обладают и протон, и нейтрон, а также все другие элементарные частицы вещества. Кольцевое же движение эфира воспринимается как электрическое поле. При локализации кольцевого движения в пределах пограничного слоя частица воспринимается как электрически нейтральная.

Определим некоторые параметры протона.

Радиус тела протона можно найти из величины эффективного радиуса ядра, определяемого соотношением [27 ]:

R = aA 1/3, а = 1,12 ф. (6.2)

Эффективный радиус определяется из процессов взаимодействия адронов (нуклонов, мезонов, альфа-частиц и др.) с ядрами и может быть несколько большей величины – от 1,2 ф до 1,4 ф. Для дальнейших расчетов принят r p = а = 1,12 ф = 1,12.10–15 м, поскольку разница может быть отнесена в сложных ядрах за счет толщины межнуклонного слоя.

Объем тела протона в первом приближении можно определить как объем шара, имеющего радиус 1,12 ф:

Vp = —π rp 3 = 5,9·10 45 м 3 (6.3)

Масса протона, как известно, равна [Яворский ] mp = 1,67·10 27 кг.

Средняя плотность протона определится из соотношения:

rp = mp / Vp = 1,67·10 27 /5,9·10 45 = 2,8·1017 кг/м3 (6.4)

Поскольку стенки протона должны быть уплотнены до критического значения, можно утверждать, что эта плотность одинакова как у центра тороида, так и у его поверхности. Во всех поперечных сечениях протона должно соблюдаться соотношение:

v т S т = const, (6.5)

где v т – скорость тороидального потока; S т – общая площадь сечения тороидального потока эфира в протоне, и оно не определено относительно каждого из сомножителей. Однако вблизи центра площадь сечения для потока значительно меньше, чем у поверхности, поэтому скорость перемещения струй эфира вблизи центра должна быть существенно больше, чем у его краев. Строгий расчет здесь затруднен.

Близость формы протона к шарообразной позволяет произвести оценочный расчет скорости движения амеров на поверхности протона.

Значение тороидальной скорости на поверхности протона можно попытаться найти из значения магнитного момента протона.

Физическая сущность магнитного момента протона определяется как максимальное значение реального механического момента, воздействующего на частицу, попавшую во внешнее сильное магнитное поле, т.е. в поток эфира (рис. 6.2).

Рис. 6.2. Возникновение вращающего момента при попадании протона в ламинарный поток эфира: 1 – зона пониженного давления; 2 – зона повышенного давления

На участок поверхности протона, на котором направления внешнего потока и потока на поверхности протона совпадают, падение давления составит:

Δ P 1 = ρ э(v пv т)² cos²α/2 (6.6)

Здесь α – угол между направлением внешнего потока и направлением тороидального движения эфира на поверхности протона.

На таком же участке, находящемся на противоположной стороне протона, падение давления составит:

Δ P 2 = ρ э (v п + v т)² cos² α /2. (6.7)

И на протон будет действовать момент, определяемый разностью этих падений давлений:

Δ P = Δ P 2Δ P 1 = 2 ρ э v п v т cos² α. (6.8)

Эта разность давлений по всей поверхности протона создаст механический момент, разворачивающий протон так, чтобы потоки эфира на внешних сторонах протона оказались антипараллельны направлению внешнего потока.

Имея в виду, что взаимодействие тороидального движения с внешним потоком происходит в поперечном направлении за счет вязкости со скоростью света, в качестве скорости набегающего потока в

выражение следует подставить v п = с = 3·108 м/с. Тогда для магнитного момента будет справедливо выражение

μ p = kπρ э сv тS p r p = kρ э сv т Vp, (6.9)

где k ’ – коэффициент, учитывающий форму протона и направления углов поверхностных участков относительно набегающего потока эфира; ρ – плотность эфира в свободном пространстве, с – скорость света; v т - скорость эфирного потока на поверхности протона в районе его экватора; S p, r p, Vp – соответственно площадь поверхности, радиус и объем протона.

Таким образом, физическая сущность магнитного момента протона – механический момент, который будет испытывать протон, ось которого расположена перпендикулярно направлению набегающего потока эфира, движущегося со скоростью света.

Скорость тороидального движения эфира на поверхности протона проще всего найти из представлений об эквивалентном круговом токе.

Магнитный момент протона составляет 2,79μя, где μя – ядерный маг-нетон, равный 5,05·10 27 Дж·Тл 1, т.е. μ p 1,41·10 26 Дж ·Тл 1.

Как известно, магнитный момент протона может быть определен как магнитный момент некоторого кругового тока i, текущего в замкнутом контуре, площадь которого равна S:

М = iS. (6.10)

Из эфиродинамической модели протона видно, что диаметр такого контура примерно равен радиусу протона. Из закона полного тока следует, что напряженность магнитного поля составляет величину

i

Н = ¾¾, (6.11)

r

где r = rp /2. Таким образом, получаем для протона

μp μp 1,41·10 26

Н = ¾¾¾ = ¾¾¾ = ¾¾¾¾¾¾ = 1018 А/м. (6.12)

rS π2 rp 3 π21,123·10 45

Как будет показано в главе 8, магнитное поле физически представляет собой поток эфира, а напряженности магнитного поля соответствует скорость потока эфира в структуре магнитной силовой линии. Значению 1 А/м соответствует скорость потока в 376,65 м/с. Следовательно, скорость потока эфира на поверхности протона будет равна

v т = 376,65·1018 = 3,76·1020 м/с.

Разумеется, весь расчет носит весьма приближенный характер.

Физическая сущность электрического заряда протона. Протон - вращающийся тороид шарообразной формы с радиусом r p создает в окрестности поле вращения. Тороидальное движение размывает вращающийся слой, поэтому скорость кольцевого движения среды на расстоянии r от центра шара составит

v к = v ко (rp / r)². (6.13)

Энергия поля скоростей при постоянной плотности эфира составляет

r э v к² r э v ко² rp ∞ 4π r ² dr

w к = ò ¾¾ dV = ¾¾¾ ò ¾¾ = 2π r э v к² rp ³, (6.14)

Vp 2 2 rp r 4

где r э - плотность среды, кг·м ¯³; v к - скорость среды на экваторе протона, м/с; rp – радиус протона, м; w v –энергия, Дж.

Для электрического заряда q протона энергия составляет

∞ εоε E ² q

wq = ò ¾¾ dV; Е = ¾¾¾; (6.15)

Vp 2 4πεоε p ²

И, таким образом,

εоε ∞ q ²4π r ² dr q ²

wq = ¾ ò ¾¾¾¾ = ¾¾¾¾. (6.16)

2 rp 16π εоε r 4 8π εоε rp

Здесь q – заряд, Кл; εо – электрическая постоянная вакуума, Ф/м; ε – относительная диэлектрическая проницаемость.

Сопоставляя выражения для механической энергии поля кольцевой скорости среды и электрической энергии поля электрического заряда протона, имеем

w к = wq; (6.17)

q ²

r э v ко² rp ³ = ¾¾¾¾, (6.18)

8π εоε rp

откуда находим

q

r э(v ко Sp)² = ε о ε (¾¾)², (6.19)

ε о ε

где Sp – площадь поверхности шара, имеющего по окружности скорость v ко.

Таким образом, величины ε о ε и q приобретают простую интерпретацию:

ε о ε, Ф/м = r э, кг/м³; q, Кл = r э v ко Sp, кг/с. (6.20)

Диэлектрическая проницаемость есть плотность эфира, при этом единице [ Ф/м ] соответствует единица [ кг/м 3]. Именно отсюда

следует, что массовая плотность эфира в вакууме равна 8,85·10 12 кг/м³.

Физическая сущность электрического заряда протона - поверхностная циркуляция плотности эфира.

Поскольку для протона rp = 1,12·10 15 м, q = 1,6·10 19 Кл, получим, что окружная (кольцевая) скорость движения поверхности пограничного слоя протона равна

1,6·10 19

v ко = ¾¾¾¾¾¾¾¾¾¾¾ = 1,15 ·1021 м·с 1. (6.21)

4π ·1,12²·10 30· 8,85·10 12

Изменение направления движения потока эфира от тороидального к кольцевому увеличивается по мере увеличения расстояния от оси тороида, поэтому в первом приближении весь тороид вращается вокруг своей главной оси почти как твердое тело, т.е. касательная скорость в центре вращения равна нулю, а далее нарастает линейно пропорционально радиусу. В тороидальном же движении имеется противоположное положение: в центре протона скорость эфира значительно больше, чем на его периферии.

Учитывая приближенность расчета тороидальной и кольцевой скоростей на поверхности протона, целесообразно из чисто логических соображений считать их равными, причем достоверность расчета кольцевой скорости выше. Поскольку направления тороидальной и кольцевой скоростей перпендикулярны друг другу, можно определить модуль скорости потока эфира на поверхности тороида как

vp = ·1,15 ·1021 = 1,6 ·1021 м/с.

Учитывая, что на внутренних стенках протона скорость движения должна быть на два порядка выше, чем на внешней стороне пограничного слоя, следует ее считать близкой к скорости первого

звука, т.е. имеющей порядок 1023 м·с 1 (скорость первого звука в эфире

равна 4,3·1023 м·с 1). Такого же порядка должна быть скорость эфирного потока, выдуваемого протоном из центрального отверстия.

Таким образом, в пределах толщины стенки протона и его поверхностного пограничного слоя происходит перепад скорости потоков эфира от 4,3·1023 м/с внутри протона до 1,6 ·1021 м/с на поверхности пограничного слоя, т.е. почти в 300 раз. Этот перепад ско-рости происходит на расстоянии, не превышающем 2,51·10 16 м, таким образом, градиент скорости здесь составляет порядка 1,3·1039м/с/м.

Такой большой градиент приводит к резкому падению и без того небольшой вязкости эфира, что является дополнительным фактором обеспечения высокой стабильности протона.

Время релаксации (самопроизвольного распада) протона как и всякого вихря определится выражением:

rp ρp k

τ = 0,36 ¾ (¾), (6.22)

χ э ρ э

где ρp - плотность эфира на поверхности протона; ρ э - плотность свободного эфира. Предположительно k = 2, однако справедливость этого предположения в дальнейшем должна быть обоснована дополнительно. Если все же высказанное положение справедливо (учитывались уменьшение отдачи энергии при малой плотности эфира окружающего пространства по сравнению с плотностью пограничного слоя на поверхности протона, понижение температуры в пограничном слое и вызванное этим понижение вязкости, а также фактор повышения устойчивости тела при быстром перемещении границы относительно окружающей среды), то

1,122 ·10 30 2,8·1017

τ = 0,36 ¾¾¾¾ (¾¾¾¾¾)2= 2,5·1018 с = 1014 = 2000 млрд лет.

4·109 8,85·10 12

Реальная величина времени релаксации, по-видимому, меньше, поскольку процесс релаксации – это процесс нелинейный и потеря энергии вихрем нарастает с течением времени за счет увеличения его размера, снижения плотности пограничного слоя и т.п. Исходя же из представлений о формировании и распаде протонов в спиральной Галактике – это время, по-видимому, можно оценить как 10 – 20 млрд. лет. Это совпадает с временем распада протона, установленным экспериментально по известным методикам, однако сразу же следует отметить, что эти методики основаны на неверных представлениях и поэтому не могут приниматься во внимание.

Количество амеров в единице объема протона составит

np = n a rp / r э = 5,8·10102 · 2,8·1017 /8,85·10 12 = 1,8·10131, (6.23)

где n a – количество амеров в единице объема свободного эфира в околоземном пространстве, rp – средняя плотность протона, равная

2,8 ·10 кг/м³, r э – плотность эфира в околоземном пространстве.

Средняя длина свободного пробега амера в теле протона

λp = 1/ n н s а = 1/ ·1,8·10131 1,66·10 89 = 2,3·10 41 м. (6.24)

Температура тела нуклона может быть найдена из примерного равенства давлений на его поверхности (при пренебрежении центробежным давлением):

Т н = Т э r э / r н = 10 46 · 8,85·10 12/2,8·1017 = 3,1·10 75 К. (6.25)

Средняя скорость теплового движения амера в теле нуклона составит:

_____ _________________

u н = u эr э / r н = 5,4·1023 √ 8,85·10 12 /2,8·1017 = 3·109 м·с-1. (6.26)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: