Метод наложения

Линейная электрическая цепь описывается системой линейных уравнений Кирхгофа. Это означает, что она подчиняется принципу наложения (суперпозиции), согласно которому совместное действие всех источников в электрической цепи совпадает с суммой действий каждого из них в отдельности.

Так как принцип наложения следует из общих свойств линейных уравнений, то его можно применять для определения любых физических величин, которые связаны между собой линейной зависимостью. В применении к электрическим цепям можно определить не только токи при заданных сопротивлениях, ЭДС и токах источников, но и напряжения при заданных токах и известных сопротивлениях. Методом нельзя пользоваться для определения мощности, так как мощность – квадратичная функция тока или напряжения и принципу суперпозиции не подчиняется.

Метод наложения опирается на принцип наложения и заключается в следующем: ток или напряжение произвольной ветви или участка разветвленной электрической цепи постоянного тока определяется как алгебраическая сумма токов или напряжений, вызванных каждым из источников в отдельности.

При использовании этого метода задача расчета разветвленной электрической цепи с n источниками сводится к совместному решению n цепей с одним источником.

Алгоритм расчета линейной электрической цепи методом наложения:

1. Произвольно задать направление токов в ветвях исследуемой цепи.

2. Исходную цепь, содержащую n источников, преобразовать в n подсхем, каждая из которых содержит только один из источников, прочие источники исключаются следующим образом: источники напряжения замыкаются накоротко, а ветви с источниками тока обрываются. При этом необходимо помнить, что внутренние сопротивления реальных источников играют роль потребителей, и поэтому они должны оставаться в подсхемах.

3. Определить токи каждой из подсхем, задавшись их направлением в соответствии с полярностью источника, любым из известных методов. В большинстве случаев расчет ведется по закону Ома с использованием метода эквивалентных преобразований пассивных цепей.

4. Полный ток в любой ветви исходной цепи определяется как алгебраическая сумма токов вспомогательных подсхем, причем при суммировании со знаком «+» берутся токи подсхем, направление которых совпадает с направлением тока в исходной цепи, со знаком «–» – остальные.

К достоинствам метода относят то, что расчет производится по частям, где составляющие тока и напряжения определяются довольно просто. Однако, поскольку решение предполагает произведение множества преобразований, метод не рекомендуется применять для схем, содержащих большое количество источников.

Пример. Определить ток I 2 в цепи, изображенной на рис. 2.8, а.

Для данной цепи должны быть изображены две расчетные подсхемы (рис. 2.8, б, в). С помощью подсхемы 1 (рис. 2.8, б) найдем составляющую по формуле о токах в двух параллельных ветвях

Направление тока в подсхеме 1 совпадает с направлением искомого тока.

С помощью подсхемы 2 (рис. 2.8, в) найдем составляющую :

 
 

Направление тока в подсхеме 2 противоположно направлению искомого тока. Ток в исходной цепи определится следующим образом:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: