double arrow
Метод хорд. Реализация метода

Пусть уравнение f( x) = 0, на отрезке [a,b] удовлетворяет условиям теоремы 1, т.е. имеет единственный корень, и производные f’(x) и f’’(x) непрерывны и имеют постоянные знаки.

С геометрической точки зрения метод хорд эквивалентен замене кривой y = f(x) хордой, проходящей через точки A[a, f(a)] и B[b, f(b)].

Для решения нелинейного уравнения по методу хорд справедлива Теорема 3.
Пусть функция y = f(x) на отрезке [a,b] удовлетворяет условиям теоремы 1, т.е. уравнение (2.1) имеет на этом отрезке единственный корень. Исходя из начального приближения x0, удовлетворяющего условию f(x0) f ’’ (x0)<0, (1.8) корень x* уравнения (2.1) с заданной точностью ε вычисляется по формуле (1.9) или (1.10)

Напомним,что знак второй производной функции легко определить из графика самой функции.

Возможны несколько вариантов расположения графика функции на отрезке [a,b].

Если график функции выпуклый внизу, то вторая производная функции больше нуля f ’’ (x0 )>0
Если график функции выпуклый кверху , то вторая производная меньше нуля f ’’ (x0 )<0

Рассмотрим 1-ый случай, когда f ’’ (x)>0 для xÎ [a,b], f(а)<0, f(b)>0 (см. рисунок ниже)






Сейчас читают про: