Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Алгоритм метода половинного деления




1. За начальное приближение берем , т.е. делим отрезок [a, b] пополам. 2.Если значение функции в этой точке равно 0, т.е , то x0 является корнем уравнения 3.Если , то из двух отрезков [a, x] и [x, b] выбираем тот, на концах которого функция f(x) имеет разные знаки (из рисунка видно, что f(x) > 0, f(a)< 0, f(b) > 0,значит выбираем отрезок [a, x].Точкуbпереносимвx0. 4.Далее итерационный процесс продолжается путем деления нового отрезка пополам, т.е. новый «суженный» отрезок [a1, b1] снова делим пополам и проводим тот же анализ . т.е. повторяем п. 2. 5.Процесс деления отрезка пополам прекращается, когда   Если условие выполняется, то полученная в результате вычислений последняя точка хn является приближённым значением корня уравнения, найденным с погрешностью e. Если условие не выполняется, то итерационный процесс необходимо продолжить.

2 этап. Уточнение корня уравнения. Реализация метода половинного деления (дитохомии)

Задание 2.4.Уточнение корня уравнения (1.2) методом половинного деления.

Последовательность действий. 1.Подготовьте таблицу, как показано на рисунке 2. Введите в ячейки: A5 текст Начало отрезка a=, E5 = 0.5, A6 текст Конец отрезка b=, E6 = 3.0, A7 текст Начальное приближение x0=, E7 = (E5+E6)/2, A8 текст Точность вычисления e=, E8 = 0.01 3.Используя автозаполнение введите номер итерации nв столбце А. 4.Заполните 1-строку таблицы: Введите в ячейки: В13 = Е5 (значение a) C13 = Е6 (значение b) D13= B13*ln(B13)-1 (формулу для f(а)) E13= C13*ln(C13)-1 (формулу для f(b)) F13 = (B13+C13)/2 (формулу для вычисления середины отрезка), G13= F13*ln(F13)-1 (формулу для f(x)) H13 = ABS(G13)(модуль значения функции) 5. B14 =ЕСЛИ(D13*G13<0; B13; F13); (формулу для формирования левого конца отрезка, используя функцию ЕСЛИ), C14 =ЕСЛИ(D13*G13<0; F13; C13), (формулу для формирования правого конца отрезка, используя функцию ЕСЛИ) . 6.Выделите ячейки D13-H13 и скопируйте на строку ниже, т.е. соответственно в D14-H14 и вы получите f(a), f(b), x, f(x) и |f(x)| в точке первого приближения х1. 7.Выделите блок ячеек В14-H14 и скопируйте их вниз до конца таблицы. 8.Итерационный процесс следует продолжить до тех пор, пока не выполнится условие |f(xn)|< e Ячейки H19-H21 тонированы серым цветом с использованием Условного форматирования(см. выше – в методе касательных) За приближенное решение уравнения по методу половинного деления с заданной точностью e=0.01 принимается 6-я итерация, т.е. x* »1,7500.  

3. Чтобы сделать наглядным окончание итерационного процесса воспользуйтесь Условным форматированием (установки см. в методе касательных)





Дата добавления: 2015-05-13; просмотров: 825; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9931 - | 7455 - или читать все...

Читайте также:

 

18.204.48.40 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.