Колебательное движение

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают определённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмосферы и поверхности Земли, колебания маятников и т.д.

Если промежутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими, а промежуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний.

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторяется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические, т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

(308)

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объясняется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не только периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний (308) величина x отклонения материальной точки от положения равно­весия называется смещением.

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний. Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний. Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний. Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется (301), также изменяется по гармоническому закону

(309)

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

(310)

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рис.81.

Рис.81
Рисю81

Циклическая частота колебаний и период определяются внутренними параметрами системы, а амплитуда колебаний и начальная фаза - начальными условиями; при этом под начальными условиями понимают значения смещения, и скорости материальной точки в момент начала отсчёта времени:

Из закона гармонического движения (308), пользуясь формулами тригонометрических преобразований, можно записать:

Обозначив и выражение закона движения можно представить в виде

(311)

Выражение (311) показывает, что гармоническое колебание с произвольной начальной фазой, отличной от нуля, можно представить в виде суммы двух гармонических колебаний с нулевыми начальными фазами, происходящих по законам синуса и косинуса, при соответствующем подборе амплитуд составляющих.

Начальные условия, как было отмечено выше, определяются значениями смещения и скорости в момент начала отсчёта времени

(312)

Из начальных условий, представленных в виде (312), легко определяются значения амплитуды и начальной фазы колебаний:

(313)

Пояснить влияние начальных условий на характер последующих колебаний системы можно на двух простых частных примерах. В первом случае будем полагать, что в начальный момент времени тело (например, тело маятника) вывели из положения равновесия, сообщив ему отклонение А, и без толчка отпустили. Начальные условия для такого случая имеют вид:

Подставив значения начальных смещения и скорости в (313), получим:

Таким образом, при заданных начальных условиях колебания тела будут происходить без начальной фазы по закону косинуса с амплитудой, равной начальному отклонению тела от положения равновесия.

Если же, во втором случае, в исходный момент времени телу в положении равновесия (начальное отклонение отсутствует) толчком сообщили скорость, то начальные значения смещения и скорости равны . Подставив эти значения в (313) получаем:

Следовательно, и в этом случае колебания происходят без начальной фазы (начальная фаза равна нулю), но на этот раз по закону синуса с амплитудой, равной .

Важными характеристиками колебательного движения являются их форма, периодичность и т.д. Эти характеристики, независимо от природы колебаний, присущи как колебаниям механическим, так и электрическим, тепловым. Что же касается причин, вызывающих и обусловливающих колебания, то они определяются природой колебательной системы. Далее будем рассматривать механические колебательные системы, например, колебания системы при выводе её из положения равновесия при наличии внутренних упругих взаимодействий. Такие колебания системы, выведенной из положения равновесия, я затем предоставленной самой себе, называются свободными. Характер свободных колебаний зависит от того, насколько большим будет сопротивление движению. Если таковым можно пренебречь, то колебания можно считать чисто гармоническими, с неизменной амплитудой, а при наличии трения амплитуда колебаний будет с течением времени уменьшаться по определённому закону, и колебания нельзя представить только гармонической функцией. В первом случае колебания обычно называют собственными, во втором - затухающими.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: