Механика

Страница «Начал» Ньютона с аксиомами механики

Заслугой Ньютона является решение двух фундаментальных задач.

· Создание для механики аксиоматической основы, которая фактически перевела эту науку в разряд строгих математических теорий.

· Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).

Кроме того, Ньютон окончательно похоронил укоренившееся с античных времён представление, что законы движения земных и небесных тел совершенно различны. В его модели мира вся Вселенная подчинена единым законам, допускающим математическую формулировку[95].

Аксиоматика Ньютона состояла из трёх законов, которые сам он сформулировал в следующем виде.

1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. 2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует. 3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны. Оригинальный текст (лат.)[показать] — Спасский Б. И. История физики. — Т. 1. — С. 139.

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики (следствие V в «Началах»)[96]. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах»[97].

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств. Ранее физики пользовались понятием вес [97], однако вес тела зависит не только от самого тела, но и от его окружения (например, от расстояния до центра Земли), поэтому понадобилась новая, инвариантная характеристика.

Завершили математизацию механики Эйлер и Лагранж.

[править]Всемирное тяготение

(См. также Гравитация, Классическая теория тяготения Ньютона).

Аристотель и его сторонники считали тяжесть стремлением тел «подлунного мира» к их естественным местам. Некоторые другие античные философы (среди нихЭмпедокл, Платон) полагали тяжесть стремлением родственных тел к соединению. В XVI веке эту точку зрения поддержал Николай Коперник[98], в гелиоцентрической системе которого Земля считалась лишь одной из планет. Близких взглядов придерживались Джордано Бруно, Галилео Галилей[99]. Иоганн Кеплер считал, что причиной падения тел является не их внутренние стремления, но сила притяжения со стороны Земли, причем не только Земля притягивает камень, но и камень притягивает Землю. По его мнению, сила тяжести распространяется по меньшей мере до Луны[100]. В своих поздних работах он высказывал мнение, что сила тяжести убывает с расстоянием и взаимному притяжению подвержены все тела Солнечной системы[101]. Физическую природу тяжести пытались разгадать Рене Декарт, Жиль Роберваль, Христиан Гюйгенс и другие учёные XVII века[102][103].

Тот же Кеплер первым предположил, что движение планет управляется силами, исходящими от Солнца. В его теории было три таких силы: одна, круговая, подталкивает планету по орбите, действуя по касательной к траектории (за счёт этой силы планета и движется), другая то притягивает, то отталкивает планету от Солнца (за счёт неё орбита планеты является эллипсом) и третья действует поперек плоскости эклиптики (благодаря чему орбита планеты лежит в одной плоскости). Круговую силу он считал убывающей обратно пропорционально расстоянию от Солнца[104]. Ни одна из этих трёх сил не отождествлялась с тяжестью. Кеплерову теорию отверг ведущий астроном-теоретик середины XVII века Исмаэль Буллиальд, по мнению которого, во-первых, планеты движутся вокруг Солнца не под действием исходящих от него сил, а в силу внутреннего стремления, а во-вторых, если бы круговая сила и существовала, она убывала бы обратно второй степени расстояния, а не первой, как считал Кеплер[105].Декарт полагал, что планеты переносятся вокруг Солнца гигантскими вихрями.

Предположение о существовании исходящей от Солнца силы, управляющей движением планет, высказывал Джереми Хоррокс[106]. По мнению Джованни Альфонсо Борелли, от Солнца исходят три силы: одна продвигает планету по орбите, другая притягивает планету к Солнцу, третья (центробежная), наоборот, отталкивает планету. Эллиптическая орбита планеты является результатом противоборства двух последних[107]. В 1666 г. Роберт Гук высказал предположение, что одной только силы притяжения к Солнцу вполне достаточно для объяснения движения планет, просто нужно предполагать, что планетная орбита является результатом сочетания (суперпозиции) падения на Солнце (благодаря силе притяжения) и движения по инерции (по касательной к траектории планеты). По его мнению, эта суперпозиция движений и обусловливает эллиптическую форму траектории планеты вокруг Солнца. Близкие взгляды, но в достаточно неопределённой форме, высказывал и Кристофер Рен. Гук и Рен догадывались, что сила тяготения убывает обратно пропорционально квадрату расстояния до Солнца[108].

Закон тяготения Ньютона

Однако никто до Ньютона не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). Более того, именно Ньютон первым догадался, что гравитация действует между двумя любыми телами во Вселенной; движением падающего яблока и вращением Луны вокруг Земли управляет одна и та же сила. Наконец, Ньютон не просто опубликовал предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

· закон тяготения;

· закон движения (второй закон Ньютона);

· система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. Таким образом, только с трудов Ньютона начинается наука динамика, в том числе в применении к движению небесных тел. До создания теории относительности и квантовой механики никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Первым аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движениякомет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Эйлера, Клеро и Лапласа, которые разработали для этого теорию возмущений. Фундамент этой теории был заложен ещё Ньютоном, который провёл анализ движения Луны, используя свой обычный метод разложения в ряд; на этом пути он открыл причины известных тогда нерегулярностей (неравенств) в движении Луны.

Закон тяготения позволил решить не только проблемы небесной механики, но и ряд физических и астрофизических задач[109]. Ньютон указал метод определения массы Солнца и планет. Он открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны. Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение[110].

Ньютоновская теория тяготения вызвала многолетние дебаты и критику принятой в ней концепции дальнодействия[111]. Однако выдающиеся успехи небесной механики в XVIII веке утвердили мнение об адекватности ньютоновской модели. Первые наблюдаемые отклонения от теории Ньютона в астрономии (смещение перигелия Меркурия) были обнаружены лишь через 200 лет. Вскоре эти отклонения объяснила общая теория относительности (ОТО); ньютоновская теория оказалась её приближённым вариантом. ОТО также наполнила теорию тяготения физическим содержанием, указав материальный носитель силы притяжения — метрику пространства-времени, и позволила избавиться от дальнодействия[112].

[править]Оптика и теория света

Ньютону принадлежат фундаментальные открытия в древней науке оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также детально исследовал дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов[113]. Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «кольца Ньютона». В письме к Флемстиду он изложил подробную теорию астрономической рефракции[114]. Но его главное достижение — создание основ физической (не только геометрической) оптики как науки[115] и разработка её математической базы, превращение теории света из бессистемного набора фактов в науку с богатым качественным и количественным содержанием, экспериментально хорошо обоснованным[114]. Оптические опыты Ньютона на десятилетия стали образцом глубокого физического исследования[115].

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета[116]. Всеобщий разлад усугубил каскад открытий XVII века:дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин, изучено Гюйгенсом), оценка скорости света (1675,Рёмер)[117]. Теории света, совместимой со всеми этими фактами, не существовало.

Дисперсия света
(опыт Ньютона)

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны — никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу — показатель преломления.

Титульный лист «Оптики» Ньютона

В 1689 году Ньютон прекратил публикации в области оптики (хотя продолжал исследования) — по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука[118]. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет (на английском языке) монография «Оптика». В предисловии к ней содержится явный намёк на конфликт с Гуком: «Не желая быть втянутым в диспуты по разным вопросам, я оттягивал это издание и задержал бы его и далее, если бы не настойчивость моих друзей»[119]. При жизни автора «Оптика», как и «Начала», выдержала три издания (1704, 1717, 1721) и множество переводов, в том числе три на латинском языке.

· Книга первая: принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями, включая теорию радуги.

· Книга вторая: интерференция света в тонких пластинках.

· Книга третья: дифракция и поляризация света.

Историки выделяют две группы тогдашних гипотез о природе света.

· Эмиссионная (корпускулярная): свет состоит из мелких частиц (корпускул), излучаемых светящимся телом. В пользу этого мнения говорила прямолинейность распространения света, на которой основана геометрическая оптика, однако дифракция и интерференция плохо укладывались в эту теорию.

· Волновая: свет представляет собой волну в невидимом мировом эфире. Оппонентов Ньютона (Гука, Гюйгенса) нередко называют сторонниками волновой теории, однако надо иметь в виду, что под волной они понимали не периодическое колебание, как в современной теории, а одиночный импульс[120]; по этой причине их объяснения световых явлений были мало правдоподобны и не могли составить конкуренцию ньютоновским (Гюйгенс даже пытался опровергнуть дифракцию[71]). Развитая волновая оптика появилась только в начале XIX века.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял»[121] и охотно допускал, что свет может быть связан и с волнами в эфире[122]. В трактате, представленном в Королевское общество в 1675 году, он пишет, что свет не может быть просто колебаниями эфира, так как тогда он, например, мог бы распространяться по изогнутой трубе, как это делает звук. Но, с другой стороны, он предлагает считать, что распространение света возбуждает колебания в эфире, что и порождает дифракцию и другие волновые эффекты[123]. По существу, Ньютон, ясно сознавая достоинства и недостатки обоих подходов, выдвигает компромиссную, корпускулярно-волновую теорию света. В своих работах Ньютон детально описал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света: «Учение моё о преломлении света и цветах состоит единственно в установлении некоторых свойств света без всяких гипотез о его происхождении»[122]. Волновая оптика, когда она появилась, не отвергла модели Ньютона, а вобрала их в себя и расширила на новой основе[115].

Несмотря на свою нелюбовь к гипотезам, Ньютон поместил в конце «Оптики» список нерешённых проблем и возможных ответов на них. Впрочем, в эти годы он уже мог себе такое позволить —— авторитет Ньютона после «Начал» стал непререкаемым, и докучать ему возражениями уже мало кто решался. Ряд гипотез оказались пророческими. В частности, Ньютон предсказал[71]:

· отклонение света в поле тяготения;

· явление поляризации света;

· взаимопревращение света и вещества.

Планетарная модель строения Резенфорда

Планетарная модель атома, или модель Резерфорда, - историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеиванием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, - подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики. Исторически планетарная модель Резерфорда пришла на смену «модели сливового пудинга» Джозефа Джона Томсона, которая постулирует, что отрицательно заряженные электроны помещены внутрь положительно заряженного атома.


Новую модель строения атома Резерфорд предложил в 1911 году как вывод из эксперимента по рассеянию альфа-частиц на золотой фольге, проведённого под его руководством. При этом рассеянии неожиданно большое количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры и в нём сосредоточен значительный электрический заряд. Расчёты Резерфорда показали, что рассеивающий центр, заряженный положительно или отрицательно, должен быть по крайней мере в 3000 раз меньше размера атома, который в то время уже был известен и оценивался как примерно 10-10 м. Поскольку в то время электроны уже были известны, а их масса и заряд определены, то рассеивающий центр, который позже назвали ядром, должен был иметь противоположный электронам заряд. Резерфорд не связал величину заряда с атомным номером. Этот вывод был сделан позже. А сам Резерфорд предположил, что заряд пропорционален атомной массе.

Недостатком планетарной модели была её несовместимость с законами классической физики. Если электроны движутся вокруг ядра как планеты вокруг Солнца, то их движение ускоренное, и, следовательно, по законам классической электродинамики они должны были бы излучать электромагнитные волны, терять энергию и падать на ядро. Следующим шагом в развитии планетарной модели стала модель Бора, постулирующая другие, отличные от классических, законы движения электронов. Полностью противоречия электродинамики смогла решить квантовая механика.

18 Антропогинез

АНТРОПОГЕНЕЗ, происхождение человека, процесс его эволюционного развития. Теория антропогенеза базируется на симиальной (от лат. «симиа» – обезьяна) гипотезе Ч. Дарвина о происхождении человека от древней человекообразной обезьяны. Процесс перехода от обезьяны к человеку – гоминизация (от лат. homo – человек) был длительным и сложным. Он включал развитие прямохождения и мозга, адаптацию руки к трудовой деятельности, появление членораздельной речи и др. Большую роль в очеловечивании обезьяны играло и изготовление орудий труда. Трудовая теория антропогенеза была изложена Ф. Энгельсом в работе «Роль труда в процессе превращения обезьяны в человека» (1896). Появление человека считается важнейшим событием четвертичного периода (антропогена), хотя, возможно, это произошло гораздо раньше.

Полагают, что гоминидная (человеческая) линия эволюции отделилась от общего с обезьянами ствола 7–8 млн. лет назад, а древнейшие представители рода человек («Гомо») появились не позднее 2 млн. лет назад. Обычно выделяют 4 стадии развития человека – австралопитековые, архантропы, палеоантропы, неоантропы. Каждая из них характеризуется своими морфологическими особенностями и археологической культурой.

Переходным звеном между человеком и обезьяной (точнее, его древним человекообразным предком) первоначально считались питекантропы (обезьянолюди). Они ходили на двух ногах, но обладали примитивным черепом, а объём мозга у них был в 1,5 раза меньше, чем у современного человека. Однако эта группа гоминид имела древность не более 1,6 млн. лет. В настоящее время переходным звеном и одной из первых ступеней в эволюции человека признают австралопитеков. Они также передвигались на двух ногах, что освободило руки и создало предпосылки к трудовой деятельности, и отличались от человекообразных обезьян строением скелета и черепа. Древнейшие восточноафриканские австралопитеки жили 5 млн. – 2,5 млн. лет назад, древность последних находок – до 6,5 млн. лет. Наиболее прогрессивных австралопитеков многие учёные считают ранними представителями рода «Гомо», первыми людьми, появившимися на рубеже 2,5 млн. – 2 млн. лет в Восточной и Южной Африке. Их часто относят к виду человек умелый («Гомо хабилис»). Представители этого вида могли изготовлять простейшие орудия труда (считаются творцами олдувайской культуры). Предполагается, что именно человек умелый предшествовал в эволюции древнейшим людям – архантропам (питекантропам).

Архантропы принадлежат к виду человек прямоходящий («Гомо эректус»). Произошли от вида «Гомо хабилис» в Африке, позже переселились отдельными группами в Юго-Восточную и Восточную Азию и Европу. Жили 1,9 млн. – 100 тыс. лет назад.

Палеоантропы – древние люди, промежуточная ступень между человеком прямоходящим («Гомо эректус») и человеком разумным («Гомо сапиенс»), к которому близки по многим признакам. Жили 250 тыс. – 35 тыс. лет назад. Есть точка зрения, что, начиная с рубежа 40 тыс. лет, неандертальцы в Европе сосуществовали с людьми современного типа, и часть их смешивалась (метисировала) с ними.

Появление неоантропов (кроманьонцев) считается завершающей стадией биологической эволюции человека. Максимальный возраст находок – 40 тыс. лет.

Наука о человеке – антропология, антропогенез – один из её разделов. При изучении и реконструкции путей эволюции человека большое значение имеют палеонтологические и палеоантропологические находки, геологический метод их датирования. Помимо традиционного для антропологии сравнительно-анатомического метода со 2-й пол. 20 в. широко используются данные молекулярной биологии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: