Рассмотрим переход от общего уравнения прямой (10) к каноническим уравнениям (11).
Данный переход осуществляется по АЛГОРИТМУ 1
|
Задача 16 Привести к каноническому виду общее уравнение прямой
.
Решение
Найдём направляющий вектор прямой. Так как он должен быть перпендикулярен нормальным векторам и
заданных плоскостей, то за
можно принять векторное произведение векторов
и
:
Таким образом,
В качестве точки , через которую проходит прямая, можно взять точку пересечения её с любой из координатных плоскостей, например, с плоскостью XOY,так как при этом
, то
-
и
этой точки определяется из системы уравнений заданных плоскостей, если в них положить
:
Решая эту систему, находим: ,
, т.е.
Подставим найденные координаты точки М0 и направляющего вектора S в уравнение (2), получим
.
Ответ:
Выполните самостоятельно
Задача 16.1 Привести к каноническому виду общее уравнение прямой:
Ответ: .