double arrow

Изучение устойчивости гидрозоля гидроксида железа.

Цель работы: Синтез гидрозоля гидроксида железа конденсационным методом; определение порога электролитной коагуляции золя и изучение зависимости его от заряда коагулирующего иона; определение защитного числа стабилизатора (высокомолекулярного соединения). (Работа рассчитана на 3 часа)

Краткое теоретическое введение

Гидрозоль гидроксида железа синтезируют методом конденсации путем проведения реакции гидролиза хлорида железа при 100ºС:

Реакция гидролиза FeCl3 идет интенсивно с образованием высокодисперсных нерастворимых в воде частиц Fe (OH)3.

Агрегативная устойчивость золя гидроксида железа обеспечивается, прежде всего, наличием на поверхности дисперсных частиц двойных электрических слоев. Элементарная частица такого золя называется мицеллой. В основе мицеллы лежит нерастворимый в данной дисперсионной среде агрегат, состоящий из множества молекул (атомов): [Fe(OH)3]n, где n – число молекул (атомов), входящих в агрегат.

Поверхность агрегата может заряжаться благодаря избирательной адсорбции ионов из дисперсионной среды или диссоциации молекул в поверхностном слое агрегата. В соответствии с правилом Пескова – Фаянса адсорбируются преимущественно ионы, входящие в состав агрегата, либо специфически взаимодействующие с ним. Ионы, сообщающие агрегату поверхностный заряд, называются потенциалопределяющими. Заряженный агрегат составляет ядро мицеллы.

При данном методе получения золя гидроксида железа ядро [Fe(OH)3]n·m Fe3+ имеет положительный поверхностный заряд за счет адсорбции ионов Fe3+ из среды (m – число адсорбированных ионов). Заряд ядра компенсируется эквивалентным зарядом противоположно заряженных ионов – противоионов, расположенных в объеме среды.

Противоионы, находящиеся непосредственно у поверхности ядра (на расстояниях, близких к диаметрам ионов), помимо электростатических сил испытывают силы адсорбционного притяжения поверхности. Поэтому они особо прочно связаны с ядром мицеллы и носят название противоионов адсорбционного слоя (их число m - x). Остальные противоионы составляют диффузно построенную ионную оболочку и называются противоионами диффузного слоя (их число соответствует х).

Мицелла гидрофобного золя является электронейтральной. Формулу мицеллы ионостабилизированного золя гидроксида железа можно записать следующим образом:

агрегат потенциал- противоионы ионы диффузного

определяющие плотного слоя

ионы слоя

_______________________

ядро мицеллы

_________________________________________

коллоидная частица

______________________________________________________

мицелла


В формуле мицеллы границы коллоидной частицы обозначены фигурными скобками. Толщина адсорбционного слоя δ мала (< 1 нм) и постоянна. Толщина диффузного слоя λ существенно больше (может быть > 10 нм) и сильно зависит от концентрации электролитов в системе.

По теории Гуи-Чепмена противоионы диффузной части ДЭС распределяются в поле поверхностного потенциала в соответствии с законом Больцмана. Теория показывает, что потенциал в диффузной части слоя снижается с расстоянием по экспоненте. При малом значении потенциала эта зависимость выражается уравнением

φ = φδе χx (1)

где φδ – потенциал диффузного слоя; х – расстояние от начала диффузной части ДЭС; χ– величина, обратная толщине диффузной части слоя.

За толщину диффузной части слоя принято расстояние, на котором потенциал диффузной части слоя φδ уменьшается в е раз.

В соответствии с той же теорией толщина диффузной части слоя равна:

(2)

где ε0 - электрическая постоянная; ε - относительная диэлектрическая проницаемость среды; F – постоянная Фарадея; I – ионная сила раствора; c0i – концентрация иона в растворе; zi – заряд иона электролита.

Из уравнения следует, что λ уменьшается с ростом концентрации электролита и заряда его ионов и с понижением температуры.

При движении одной фазы относительно другой на плоскости скольжения происходит разрыв ДЭС (как правило, в диффузной части) и возникновение электрокинетического («дзета») ζ – потенциала (см. рис 1).

В процессе коагуляции высокодисперсного слоя гидроксида железа образуются сравнительно небольшие по размерам седиментационно-устойчивые агре-

гаты. Поэтому исследование коагуляции частиц Fe(OH)3 удобнее всего проводить с помощью турбидиметрического метода. Применимость этого метода основывается на сильной зависимости интенсивности светорассеяния от размеров частиц. При коагуляции частиц она повышается, соответственно увеличивается оптическая плотность золя. Поскольку при прохождении светового потока через окрашенные золи часть света рассеивается, а часть поглощается, то при изучении коагуляции в таких системах методом турбидиметрия необходимо исключить поглощение света. Для золя Fe (OH)3 этого можно достичь, проводя измерения при красном светофильтре, т.е. при длине волны падающего света λ = 620 – 625 нм.

Порог быстрой коагуляции находят по пороговому объему электролита Vк (мл), при котором оптическая плотность золя достигает максимального значения, а при дальнейшем добавлении электролита не изменяется. Значение ск рассчитывают по формуле:

(3)

где ск – концентрация введенного электролита, моль/л; V – объем золя, мл.

Для предотвращения агрегации частиц и защиты гидрозолей от коагулирующего действия электролитов применяют высокомолекулярные соединения и коллоидные ПАВ, растворимые в воде, например белки, мыла, крахмал, декстрин. Их стабилизирующее действие основано на образовании на поверхности частиц дисперсной фазы адсорбционных гелеобразных пленок и связано как с уменьшением межфазного натяжения, так и со структурно – механическими свойствами поверхностных слоев.

Защитная способность полимеров или ПАВ относительно выбранного золя характеризуется защитным числом S – количеством вещества, требуемого для стабилизации единицы объема золя. Защитное число S, как и порог коагуляции ск, определяют методом турбидиметрии. Защитное число S (г/л золя) вычисляют по уравнению:

(4)

где сст – концентрация раствора стабилизатора, г/л; Vзащ – объем раствора стабилизатора, необходимый для предотвращения коагуляции золя, мл.

При коагуляции электролитами по концентрационному механизму (для сильно заряженных частиц) порог коагуляции ск обратно пропорционален заряду z коагулирующего иона в шестой степени, т.е

(5)

Рис 2. Зависимость оптической плотности D золя от объема электролита – коагулятора Vэл.

Рис 3. Зависимость оптической плотности D золя от объема раствора стабилизатора Vст.

Значение Vзащ соответствует объему стабилизатора в золе, содержащем пороговый объем Vк электролита, при котором на кривой зависимости D = f (Vст) появляется нижний горизонтальный участок (рис. 3).

Приборы и методы измерений

Фотоэлектроколориметр типа ФЭК – 56М

Электрическая плитка

Коническая колба емкостью 250 мл

Пробирки емкостью 20 мл

Бюретки емкостью 25 мл и градуированные пипетки

2 %-ый (масс.) раствор сульфата натрия

0.5 М раствор ацетата натрия

0.01 %-ый (масс.) раствор желатины

Последовательность выполнения работы

Для получения гидрозоля Fe (OH)3 в колбу с 250 мл кипящей дистиллированной воды наливают 10 мл раствора хлорида железа. Образовавшийся золь, красно – коричневого цвета, охлаждают до комнатной температуры.

Далее исследуют коагуляцию золя гидроксида железа при введении в него растворов сульфата натрия или ацетата натрия путем измерения оптической плотности полученных систем.

В 10 пробирок наливают по 10 мл золя, воду и электролит (раствор Na2SO4 или СН3СООNa) в следующих объемах:

Номер пробирки … 1 2 3 4 5 6 7 8 9 10

Объем воды, мл...... 10,0 9,0 8,5 8,0 7,5 7,0 6,5 6,0 5,5 5,0

Объем электролита

Vэл, мл ……………. 0 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

Электролит вводят в каждую пробу золя за 2-4 мин непосредственно перед измерением ее оптической плотности.

Измеряют оптическую плотность золя в каждой колбе с помощью фотоэлектроколориметра с применением светофильтра № 8 или № 9.

Последовательность выполнения работы

Полученные данные записывают в таблицу 1.

Таблица 1. Результаты исследования коагуляции золя гидроксида железа оптическим методом.

Объем электролита Vэл ,мл Оптическая плотность золя D
электролит NaCH3COO электролит Na2SO4
     

Строят график зависимости D = f (Vэл) для Na2SO4 и CH3COONa, по нему находят пороговые объемы электролита Vк, вызывающие быструю коагуляцию золя, и по формуле рассчитывают значения ск. Сравнивают найденные значения ск для Na2SO4 и CH3COONa и объясняют их в соответствии с правилом Шульце – Гарди [ законом Дерягина – Ландау, см. уравнение (5)].

Затем определяют защитное число полиметра – желатины относительно золя Fe(OH)3. Для этого готовят 10 проб, наливая в пробирки золь и растворы в следующем объеме и последовательности:

Номер пробирки …………. 1 2 3 4 5 6 7 8 9 10

Объем золя, мл …………… 10 10 10 10 10 10 10 10 10 10

Объем воды

и электролита, мл ……….. до 20 мл, учитывая объемы золя, раствора желатины

Объем раствора

желатины Vст, мл ………. 5,0 4.0 3,5 3,0 2,5 2,0 1,5 1,0 0.5 0

Объем электролита, мл в объеме, соответствующем Vк

Как и при исследовании коагуляции, общий объем проб должен быть одинаковым и составлять 20 мл. Электролит – коагулятор добавляют через 10-15 мин после введения желатины (для адсорбции желатины на частицах золя). Оптическую плотность золя измеряют через 3-5 мин после введения электролита. Значения D записывают в таблицу (см. табл. 2).

Строят график зависимости D = f (Vст). Находят объем раствора желатины Vзащ, необходимый для предотвращения коагуляции золя, и по формуле (4) рассчитывают защитное число S.

Таблица 2. Экспериментальные данные для определения

защитного числа желатины.

№ пробирки Объем раствора желатины Vст, мл Оптическая плотность золя D
     
     

Контрольные вопросы

1. Строение двойного электрического слоя коллоидных наночастиц.

2. Факторы, обеспечивающие агрегативную устойчивость наночастиц.

3. Концентрационная и нейтрализационная коагуляция золей под действием электролитов.

4. Правило Шульце-Гарди и закон шестой степени Дерягина-Ландау.

5. Основные положения теории ДЛФО.

6. Влияние электролитов на поверхностные силы и устойчивость наносистем.

7. Адсорбционно-сольватный и структурно-механический факторы устойчивости наносистем.

8. Коллоидная защита. Защитное число стабилизатора.

Литература

1. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. Учебник для вузов.-М.:Химия, 1988.

2. Зимон А.Д. Коллоидная химия. М.: Агар, 2007.

3. Лабораторные работы и задачи по коллоидной химии.- Под ред. Ю.Г.Фролова и А.С.Гродского.-М.:Химия,1986.


ЛАБОРАТОРНАЯ РАБОТА № 5


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: