Определение. Частными (частичными) суммами функционального ряда
называются функции 
Определение. Функциональный ряд
называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательности
называется суммой ряда
в точке х0.
Определение. Совокупность всех значений х, для которых сходится ряд
называется областью сходимости ряда.
Определение. Ряд
называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.
Теорема. (Критерий Коши равномерной сходимости ряда) Для равномерной сходимости ряда
необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство
выполнялось бы для всех х на отрезке [a,b].
Теорема. (Признак равномерной сходимости Вейерштрасса)
(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)
Ряд
сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами: 
т.е. имеет место неравенство:
.
Еще говорят, что в этом случае функциональный ряд
мажорируется числовым рядом
.
Пример. Исследовать на сходимость ряд
.
Так как
всегда, то очевидно, что
.
При этом известно, что общегармонический ряд
при a=3>1 сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.
Пример. Исследовать на сходимость ряд
.
На отрезке [-1,1] выполняется неравенство
т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах (-µ, -1) È (1, µ) расходится.
Свойства равномерно сходящихся рядов.
1) Теорема о непрерывности суммы ряда.
Если члены ряда
- непрерывные на отрезке [a,b] функции и ряд сходится равномерно, то и его сумма S(x) есть непрерывная функция на отрезке [a,b].
2) Теорема о почленном интегрировании ряда.
Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b], сходится к интегралу от суммы ряда по этому отрезку.

3) Теорема о почленном дифференцировании ряда.
Если члены ряда
сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных
сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.






