В задаче определения условного экстремума уравнения
,х2, ……….х𝑛)= 0,1=1,2…., m,m<n называют: уравнение связи
В ыбор наилучшего решения множества вариантов производства, распределения или потребления, осуществляется с помощью оптимизационных моделей
В енгерский метод применяется при решении задач целочисленного программирования
В транспортной задаче цикл в таблице с базисным распределением поставок, при котором одна из его вершин лежит в свободной клетке, остальные – в заполненных, называется циклом пересчета
В следствие повышения цен на яблоки кривая спроса на груши сдвигается вправо
В транспортной задаче, где m – число поставщиков, n – число потребителей, количество переменных, подлежащих нахождению равно: m * n
В теории графов для любого дерева с m вершинами и n ребрами выполняется соответствие: m = n – 1
В транспортной задаче открытого типа имеется 3 поставщика и 5 потребителей некоторого однородного груза. Чтобы план перевозок не был вырожденным, число занятых клеток в таблице поставок должно быть равно: 8
В теории графов, связный без циклов называется: деревом
В задачах линейного программирования (при использовании геометрических построений) линия уровня
: в направлении противоположном направлению вектора 
В модели Солоу устойчивый рост объема выпуска расчете на одного занятого объясняется: технологическим прогрессом
В задачах линейного программирования вектор переменных Х, удовлетворяющий системе ограничений задачи, называют: допустимым.
В модели межотраслевого баланса основой информационного обеспечения является: технологическая матрица.
В статистических межотраслевых моделях не используются: межотраслевые потоки капитальных вложений
В схеме межотраслевого баланса количество квадрантов равно: 4
В ектор Х=
,х2, ……….
)являющийся решением системы

и содержащий лишь неотрицательные компоненты, называется: допустимым
В ектор Х=
,х2, ……….
)являющийся решением системы

называется допустимым, если для любых j=1,2, ……n выполняется: 
В многоканальных системах массового обслуживания с неограниченной длиной очереди, очередь не растет бесконечно, если приведением интенсивность потока заявок p=λ/m удовлетворяет условие: p/n<1
В модели межотраслевого баланса матрица А является матрицей коэффициентов прямых материальных затрат
В еличины конечной продукции в модели межотраслевого баланса Леонтьева находится по формуле: Y=(Е – А) Х
В модели международной торговли (линейной модели торговли) АХ – Х = 0, матрица А – это: структурная матрица торговли
В ектор Х=
,х2, ……….
)являющийся решением системы
s w:space="720"/></w:sectPr></w:body></w:wordDocument>">
и удовлетворяющую условие
при котором линейная функция F=
принимает максимальное или минимальное значение, называется: оптимальным решением
В одноканальной системе массового обслуживания с неограниченной очередью интенсивность потока заявок составляет 5 вызовов в минуту, а среднее время обслуживания одной заявки 10 секунд, среднее время пребывания заявки в системе равно: одна минута
В одноканальной системе массового обслуживания с неограниченной очередью интенсивность потока заявок составляет 5 вызовов в минуту, а среднее время обслуживания одной заявки 10 секунд. Среднее число заявок в очереди равно 4
В одноканальных системах массового обслуживания с неограниченной длиной очереди, очередь не растет бесконечно, если приведенная интенсивность потока заявок p=λ/m: p<1
В еличины валовой продукции в модели межотраслевого баланса Леонтьева находятся по формуле: Х=(Е-А) 
Д ля полуплоскости
точка А(3; 7) является внешней точкой.
М одель, соответствующая задаче нахождения переменных
, удовлетворяющих системе неравенств (уравнений)
(
) где
(
),обращающих в максимум (или минимум) функцию
, называется: задачей целочисленного программирования.

Для улучшения опорного плана транспортной задачи цикл пересчета следует построить для клетки: (3; 3).
Д ана задача линейного программирования

Ограничения на искомые переменные двойственной задачи имеют вид:

М одели, которые используют такие наглядные элементы, как упругие шары, потоки жидкости, траектории движения тел, относятся к: образным.
М оделирование, в котором изучаются модели, предназначенные для воспроизведения динамики процессов, происходящих в изучаемом объекте, причем общность процессов основывается на сходстве их физической природы, называется физическим.
М одель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется: канонической.
П ри решении задачи целочисленного программирования методом Гомори при необходимости вводится дополнительное ограничение
. Вместо многоточия следует поставить знак 
М етодом целочисленного программирования требуется решать задачу о назначении
В ыбор наилучшего решения из множества вариантов производства, распределения или потребления, осуществляется с помощью: оптимизационных моделей
П араллельными ребрами в графе называются ребра имеющие одинаковые концевые вершины
Е сли в транспортной задаче объем потребностей превышает объем запасов, в рассмотрение вводят: один фиктивный пункт производства.
М етодом рекуррентных соотношений решается задача динамического программирования
З адача линейного программирования при условии максимизации целевой функции имеет оптимальное решение, если допустимое множество решений не пусто и ограничено сверху
С етевой график задачи СПУ (сетевого планирования и управления) имеет четыре полных пути. Их длины:
,
,
,
.
Наибольшим полным резервом времени обладает второй путь.
С етевой график задачи СПУ (сетевого планирования и управления) имеет четыре полных пути. Их длины:
,
,
,
.
Длина критического пути равна 41.
У равнение Беллмана (рекуррентное соотношение) для задачи загрузки рюкзака имеет вид: 
П ри анализе случайных процессов с дискретными состояниями удобно пользоваться графом состояний.
Р ентабельной является продукция, для которой дополнительная двойственная переменная
в оптимальном плане задачи: 
П оиск разрешающего элемента в симплекс-таблице при решении задачи линейного программирования симплексным методом начинается с…
выбора разрешающего столбца.

Оптимальным в данной задаче линейного программирования является вектор X = (0; 4; 0)
В ероятность отказа в обслуживании заявок в многоканальной СМО равна 0,2. Приведенная интенсивность потока требований (
) – 5. Среднее число занятых каналов равно 4.
Д ана задача линейного программирования

Двойственной по отношению к данной является задача

Случайный процесс называется Марковским, если это: процесс без последствий.