Передаточная функция. Из выражения для производной d(exp(jwt))/dt = jw exp(jwt)
следует, что при расчете фильтра производной массива данных необходимо аппроксимировать рядом Фурье передаточную функцию вида H(w) = jw. Поскольку коэффициенты такого фильтра будут обладать нечетной симметрией (h-n = -hn) и выполняется равенство
hn [exp(jwn)-exp(-jwn)] = 2j hn sin nw,
то передаточная характеристика фильтра имеет вид:
H(w) = 2j(h1 sin w + h2 sin 2w +... + hN sin Nw),
т.е. является мнимой нечетной, a сам фильтр является линейной комбинацией разностей симметрично расположенных относительно sk значений функции. Уравнение фильтрации:
yn =
hn(sk+n - sk-n).
Если дифференцированию подлежит низкочастотный сигнал, а высокие частоты в массиве данных представлены помехами, то для аппроксимации в пределах главного частотного диапазона задается (без индекса мнимости) передаточная функция фильтра вида:
H(w) = w, w £ wв, H(w) = 0, wв< w £ wN.
Оператор дифференцирующего фильтра:
h(n) = (2/p)
H(w) sin(npw/wN) dw, n = 0,1,2,... (7.5.1)
Принимая, как обычно, wN = p (Dt = 1) и решая (7.5.1) при H(w) = w, получаем:
hn = (2/p)[sin(nwв)/n2 - wв cos(nwв)/n], (7.5.2)
hо = 0, h-n = -hn.
Im(H(w)) =
hn sin nw = 2
hn sin nw. (7.5.3)
Точность дифференцирования. На рис. 7.5.1 приведен пример расчета коэффициентов дифференцирующего фильтра на интервал частот {0-0.5}p при Dt=1 (wв = p/2). Операторы дифференцирующих фильтров, как правило, затухают очень медленно и, соответственно, достаточно точная реализация функции (7.5.3) весьма затруднительна.
Рис. 7.5.1. Коэффициенты оператора фильтра. |
Ряд (7.5.3) усекается до N членов, и с помощью весовых функций производится нейтрализация явления Гиббса. Явление Гиббса для дифференцирующих фильтров имеет весьма существенное значение, и может приводить к большим погрешностям при обработке информации, если не произвести его нейтрализацию. Примеры ограничения оператора, приведенного на рис. 7.5.1, и соответствующие передаточные функции H'(w) усеченных операторов показаны на рис. 7.5.2.
Для оценки возможных погрешностей дифференцирования усеченными операторами произведем расчет фильтра при wв = p/2. По формулам (7.5.2) определяем:
h0-10 = 0, 0.3183, 0.25, -0.0354, -0.125, 0.0127, 0.0833, -0.0065, -0.0625, 0.0039, 0.05.
Рис. 7.5.2. Частотные функции фильтров. |
Произведем проверку работы фильтра на простом массиве данных sn = n, производная которого постоянна и равна 1. Для массива с постоянной производной фильтр может быть проверен в любой точке массива, в том числе и в точке n=0, для которой имеем:
у =
hn so-n = 2
n hn,
при этом получаем: у=0.5512 при N=5, у=1.53 при N=10.
Рис. 7.5.3. Погрешность дифференцирования. |
Такое существенное расхождение с действительным значением производной объясняется тем, что при w=0 тангенс угла наклона реальных передаточных функций фильтра, как это видно на рисунке 7.5.2, весьма существенно отличается от тангенса угла наклона аппроксимируемой функции H(w) = w. На рис. 7.5.3 приведены частотные графики относительной погрешности дифференцирования s = Hн'(w)/Hн(w) с вычислением значений на нулевой частоте по пределам функций при N → ∞. На рис. 7.5.4 приведен пример операции дифференцирования гармоники s с частотой wo оператором с N=10 в сопоставлении с точным дифференцированием ds/dk.

Рис. 7.5.4. Пример операции дифференцирования.
Применение весовых функций. Применим для нейтрализации явления Гиббса весовую функцию Хемминга. Результат нейтрализации для фильтра с N=10 приведен на рис. 7.5.5. Повторим проверочный расчет дифференцирования на массиве sn = n и получим результат у=1.041, т.е. погрешность дифференцирования уменьшается порядок.

Рис. 7.5.5. Дифференцирование с применением весовой функции.
Аналогично производится расчет и полосовых дифференцирующих фильтров с соответствующим изменением пределов интегрирования в (7.5.1) от wн до wв. При этом получаем:
hn = (wнcos nwн-wвcos nwв)/(np) + (sin nwв-sin nwн)/(n2p).
Фильтры с линейной групповой задержкой. Дифференцирующие фильтры, а равно и любые другие фильтр с мнимой частотной характеристикой, например, оператор преобразования Гильберта, могут быть выполнены в каузальном варианте при условии обеспечения линейной групповой задержки сигнала, которое записывается следующим образом:
j(w) = b - aw, (7.5.4)
где b и a - константы.
Оно выполняется, если импульсная характеристика фильтра имеет положительную симметрию:
h(n) = -h(N-n-1), n = 0, 1, 2, …, (N-1)/2, N – нечетное (тип 1);
n = 0, 1, 2, …, (N/2)-1, N – четное (тип 2).
При этом фазовая характеристика будет определяться длиной фильтра:
a = (N-1)/2, b = p/2.
Частотная характеристика фильтра:
H(w) = |H(w)| exp(jj(w)), (7.5.4)
где модуль |H(w)| задается нечетным. Оба типа фильтров вводят в выходной сигнал сдвиг фазы на 90о. Кроме того, частотная характеристика фильтра типа 1 всегда равно нулю на частоте Найквиста, что определяется знакопеременностью левой и правой части главного диапазона спектра с учетом периодизации спектра дискретных функций.
Курсовая работа 10-07. Разработать и исследовать оптимальный способ закругления частотной характеристики дифференциального фильтра и реализовать его в программе расчета фильтра и фильтрации цифровых данных..
7.6. АЛЬТЕРНАТИВНЫЕ МЕТОДЫ РАСЧЕТА нцф [43].
Метод прямого расчета НЦФ по частотной характеристики понятен и прост для применения. Недостаток метода – отсутствие гибкости. Он не позволяет проектировать фильтры с разной степенью неравномерности частотной характеристики в полосах пропускания и подавления, а степень неравномерности не зависит от количества членов фильтра и не может изменяться. Максимальные осцилляции частотной характеристики всегда наблюдаются в области полосовых границ и уменьшаются при удалении от них, но при близких границах могут наблюдаться явления интерференции осцилляций. Более гибкими в проектировании являются альтернативные методы: оптимизационные,
Оптимизационные методы позволяют проектировать экономные по размерам операторы фильтров с оптимальными (по Чебышеву) осцилляциями частотных характеристик. Они основаны на понятии полос равных колебаний.
Рис. 7.6.1. Оптимальный фильтр низких частот |
Частотная характеристика оптимального фильтра низких частот приведена на рис. 7.6.1. В полосе пропускания реальная характеристика фильтра осциллирует с постоянными амплитудными колебаниями между значениями 1-dp и 1+dp. В полосе подавления осцилляции постоянной амплитуды находятся в интервале 0-ds. Разность между идеальной и практической характеристиками представляет собой функцию ошибок E(f). Оптимальный метод позволяет определить коэффициенты фильтра h(n), для которых значение максимальной взвешенной ошибки минимизируется
min[max(E(f))]
в полосе пропускания и в полосе подавления, при этом характеристика фильтра будет иметь равные колебания в пределах полос пропускания и подавления, а количество экстремумов колебаний у фильтров с линейной фазовой характеристикой обычно прямо связано с количеством коэффициентов фильтра (N+1)/2.
При расчете фильтра ключевым моментом является определение положения частот экстремумов, которое выполняется итерационным алгоритмом Ремеза, после чего по положениям экстремумов задается частотная характеристика фильтра и определяются его коэффициенты. Методика расчета оптимальных фильтров подробно с примерами, в том числе в среде Matlab, рассмотрена в работе /43/.
Метод частотной выборки представляет собой вариант метода расчета фильтра по частотной характеристике без применения весовых функций и может применяться для расчетов как частотно-избирательных фильтров, так и фильтров с произвольной частотной характеристикой.
В основе метода лежит непосредственное задание частотной характеристики фильтра в цифровой форме с последующим подбором переходных зон под требуемые характеристики фильтра по величине допустимых осцилляций в полосе пропускания и подавления. Расчет желательно вести в интерактивном режиме, например, в среде Mathcad. В качестве примера приведем расчет низкочастотного фильтра.
Рис. 7.6.2. Задание параметров НЦФ. |
Допустим, нам требуется достаточно простой симметричный низкочастотный фильтр с шириной переходной зоны порядка 0.2 главного частотного диапазона (при Dk=1 для фильтра, fN = 0.5 Гц для спектра и ширина переходной зоны 0.2 х 0.5 = 0.1 Гц). Минимальный размер фильтра при идеальной характеристике для обеспечения такого перехода 2N+1 = 2(1+1/0.1) = 11 точек. С учетом расширения переходной зоны при уменьшении осцилляций на границе зон примем для начала N=8. Частотная характеристика проектируемого фильтра (правая половина) приведена на рис. 7.6.2 с границей раздела зон между 3 и 4 отсчетами спектра. Расчет оператора фильтра проводим обратным преобразованием Фурье, а по полученным отсчетам оператора вычисляем фактическую частотную характеристику этого оператора с уменьшением шага по частоте в 4-6 раз, что позволяет выявить осцилляции и определить погрешность фильтра (по максимумам осцилляций).
Рис. 7.6.3. Подбор отсчетов переходной зоны НЦФ. |
На рис. 7.6.3. показан результат подбора частотных значений характеристики фильтра в районе переходной зоны (2 точки), что позволяет более чем в 30 раз снизить осцилляции частотной характеристики.
Рис. 7.6.4. НЦФ с точкой подбора на границе. |
Попутно заметим, что изменение осцилляций характеристики фильтра может производиться индивидуально для зоны пропускания (левой от границы точкой) и зоны подавления (правой точкой) в зависимости от того, требуется ли более высокая точность пропускания или подавления частот. Особенно эффективно это при использовании трех точек подбора с расположением центральной точки на границе полос пропускания и подавления, как это показано на рис. 7.6.4.
При использовании данного метода может использоваться и комбинированный подход: задание на частотной характеристике избыточного количества точек, отладка параметров фильтра по трем и более точкам в переходных зонах, а затем усечение оператора фильтра с применением весовых функций.
Метод частотных выборок допускает также рекурсивную реализацию фильтров /43/.
литература
24. Хемминг Р.В. Цифровые фильтры. – М.: Недра, 1987. – 221 с.
43. Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с.
Главный сайт автора ~ Лекции по ЦОС ~ Практикум
О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.
Copyright ©2008 Davydov А.V.
Рис. 7.5.1. Коэффициенты оператора фильтра.
Рис. 7.5.2. Частотные функции фильтров.
Рис. 7.5.3. Погрешность дифференцирования.
Рис. 7.6.1. Оптимальный фильтр низких частот
Рис. 7.6.2. Задание параметров НЦФ.
Рис. 7.6.3. Подбор отсчетов переходной зоны НЦФ.
Рис. 7.6.4. НЦФ с точкой подбора на границе. 





