Максимуми і мінімуми функції

Означення 1. Функція y=f(x) має максимум в точці х0, якщо значення функції в деякому околі цієї точки не перевищують значення в самій точці, тобто

¦(х)£¦(х0).

Означення 2. Функція y=f(x) має мінімум в точці х1, якщо значення функції в деякому околі цієї точки не менші значення в самій точці, тобто

¦(х)³¦(х1).

f(x2)=ymax

Y f(x0)=ymax

f(x3)=ymin

f(x1)=ymin

x0 x1 x2 x3 X

рис.42

Максимуми і мінімуми функції називають екстремуми. Функція y=f(x) може мати на даному відрізку декілька максимумів і мінімумів. Екстремуми мають локальний (місцевий) характер, вони описують поведінку функції тільки в околі даної точки.

Всі точки, в яких функція набуває екстремума називається критичними.

Наприклад. На рисунку 42 точки x0,x1,x2,x3 – критичні точки.

Теорема 1. (Необхідна умова екстремума). Якщо функція y=f(x) має екстремум при х=х0, то похідна в цій точці, якщо вона існує, дорівнює нулю, тобто ¦¢(х0)=0.

Наприклад. На рис.1 ¦¢(х0)=¦¢(х1)=¦¢(х2)=0.

Теорема 1 виражає тільки необхідну умову екстремума, але не достатню, див. рис. 43

Y

¦¢(х0)=0 y=f(x)

 
 


0 x0 X

рис.43

Точки в яких ¦¢(х0)=0 називаються стаціонарними, в них швидкість зміни функції дорівнює нулю.

Із викладеного випливає, що критичні точки функції, тобто точки екстремума, слідує шукати серед стаціонарних точок, де ¦¢(х0)=0, також серед точок, в яких похідна ¦¢(х) не існує. Наприклад в точці х3 (рис.42) функція має мінімум, але графік не є гладким, похідна в точці х3 – не існує.

Теорема 2. (Достатня умова екстремуму). Нехай функція у=¦(х):

1) неперервна при х=х0;

2) має похідну ¦¢(х0) в деякому околі точки х0, за винятком, можливо, самої цієї точки;

3) похідна зберігає знак окремо зліва і справа від х0.

Тоді, якщо при переході через точку х0 (зліва направо)

а) ¦¢(х) змінює знак з “+” на “–”, то при х=х0 маємо максимум;

б) ¦¢(х) змінює знак з “–” на “+”, то при х=х0 маємо мінімум;

в) якщо знак похідної не змінюється, то в точці х0 екстремуму не має.

Теорема 3. (Друга достатня умова екстремуму). Якщо функція у=¦(х) в точці х=х0 має першу і другу похідну, причому ¦¢(х0)=0, а ¦¢¢(х0)¹0, і ¦¢¢(х) неперервна в околі точки х=х0, то в точці х=х0 у=¦(х) має екстремум, причому це буде максимум, якщо ¦¢¢(х0)<0, і мінімум, якщо ¦¢¢(х0)>0.

Див., напр., рис. 44

Y

x0 x1 X

рис.44

Скорочено маємо:

Можуть зустрічатись випадки, коли ¦¢(х0)=0 і ¦¢¢(х0)=0, тоді користуються більш загальним твердженням.

Теорема 4. Якщо функція у=¦(х) має в околі точки х=х0 неперервні похідні до n-го порядку (n>1) включно і якщо

в той час як f(n)(x0)¹0, то при n парному функція має максимум, якщо f(n)(x0)<0, i мінімум, якщо f(n)(x0)>0; якщо n – непарне, то функція екстремума в точці х=х0 не має.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: