Розв’язання

1. Функція визначена для . Знаходимо похідну . Похідна точок розриву немає і може змінювати знак при переході через корінь

, .

Наносимо корінь на числову вісь, яка при цьому розіб’ється на два інтервали і

()

За допомогою пробних точок визначаємо знак похідної на кожному з інтервалів. Якщо взяти , то - функція спадає.

Якщо , то

- функція зростає.

Отже, для ;

для .

2. -функція визначена для всіх . Її похідна

має корені і , які розбивають числову вісь на три інтервали

, ,

Підставляючи пробні точки у розклад похідної на множники , визначаємо її знак у кожному із інтервалів (див. рис.). У відповідності до знаку похідної на даному інтервалі робимо висновок про поведінку функції:

, функція зростає;

, функція спадає;

, функція зростає.

3. - функція не існує у точках . Знаходимо похідну

.

Корені похідної , та її точки розриву і розбивають числову вісь на 5 інтервалів, визначаємо знак похідної на кожному з них:

, функція спадає;

, функція зростає;

, функція зростає;

, функція спадає;

, функція спадає.

Тут числа - це пробні точки, з відповідних інтегралів, у яких визначався знак похідної.

4. Функція існує для всіх , її похідна

.

Оскільки похідна невід’ємна, то дана функція неспадна для всіх .

5. Знайдемо спочатку область існування (визначення) функції ,

. Функція існує на проміжку . Похідна функції має вигляд

;

- корінь похідної, яка до того має таку область існування .

Для , функція зростає;

Для , функція спадає.

Відмітимо ще, що за допомогою похідної можна доводити деякі нерівності.

Приклади. Довести нерівності.

6. . 7. .

8. .

9. .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: