Задачи по теме «Законы сохранения энергии и импульса»

12. Тело падает и отскакивает вертикально с высоты 2 м до высоты 1 м. Как меняется импульс тела при отскоке? Сколько энергии переходит в тепло? Масса тела 1 кг.

Решение:

Измнеие импульса тела ,

Скорости тела перед падением и после отскока найдем из закона сохранения энергии: . Аналогично, . Тогда изменение импульса равно

Чтобы найти, сколько энергии перешло в тепло, еще раз используем закон сохранения энергии:

13. Пуля массы m, летящая вертикально вверх со скоростью v, застревает в доске массы M, лежащей на двух опорах. Определить количество теплоты, которое выделилось при этом, и высоту, на которую поднялись пуля и доска.

Решение:

Запишем закон сохранения импульса и энергии для момента, когда пуля застревает в доске:

Высоту подъема доски с застрявшей пулей найдем из закона сохранения энергии:

14. На сортировочной станции на покоящийся вагон массы m с горки направляют вагон с массы 2m. Как отличаются скорости вагонов до и после сцепки? Какая часть кинетической энергии системы переходит в тепло при сцепке? Вагоны, в конце концов, останавливаются. Почему не сохраняется суммарный импульс двух вагонов?

Решение:

До сцепки вагон массы 2m имеет скорость v1. Второй вагон имеет нулевую скорость. После сцепки вагоны движутся с одинаковой скоростью v2.

Запишем закон сохранения импульса , тогда можно выразить соотношение скоростей вагонов до и после сцепки как .

Количество энергии, перешедшей в тепло, найдем по закону сохранения энергии с учетом соотношения скоростей:

. То есть 1/3 начальной кинетической энергии перешла в тепло.

После сцепки суммарный импульс не сохраняется, потому что на вагоны действует внешняя сила – сила трения.

15. Горизонтально летящей со скоростью V пулькой пробивают брусок, стоящий на краю вертикального обрыва высоты Н. Брусок падает на расстоянии A от основания обрыва, пулька - на расстоянии Б. Во сколько раз масса пульки меньше массы бруска?

Решение:

После того, как пулька пробьёт брусок, они будут иметь только горизонтальную скорость, поэтому на Землю упадут одновременно, но будут лететь по разным траекториям. Запишем закон сохранения импульса для момента, когда пулька пробивает брусок:

.

Поделим обе части выражения на m:

.

Выразим соотношение масс из предыдущего выражения:

.

Используем принцип независимости движения тел в поле тяжести по горизонтальной и вертикальной оси и рассмотрим падение бруска и пульки с обрыва.

По вертикальной оси движение обоих тел равноускоренное с ускорением g без начальной скорости.

- время полета каждого тела до падения.

По горизонтальной оси оба тела двигались равномерно с начальными скоростями v1 и v2 в течение времени t, которое мы выразили выше. Для бруска: . Для пули: .

Подставим выражения для v1 и v2 в формулу для отношения масс, полученную из закона сохранения импульса и получим ответ: .

16. Космический зонд разгоняют импульсами нейтральных частиц с массивной платформы, при этом частицы захватываются зондом. Частицы можно выпускать с платформы все сразу или равными долями с интервалом по времени. В конечном итоге масса зонда удваивается. Найти стратегию разгона для достижения наибольшей скорости зонда. Найти эту скорость, если начальная масса зонда m, скорость вылета частиц с платформы V. Гравитационные и релятивистские эффекты не учитывать. Начальная скорость зонда равна нулю.

Решение:

Пусть было решено выпустить N равных долей частиц. Тогда закон сохранения импульса для системы «доля частиц-зонд» после попадания первой доли частиц:

(1) .

После попадания второй доли частиц:

(2) .

После попадания N-той доли частиц импульс зона станет:

(N) .

Просуммируем выражения (1)-(N). Члены типа в левой и правой части выражения сократятся, и получится . Конечное выражение не зависит от N. Поэтому количество долей частиц не имеет значения.

Конечная скорость зонда: .

Есть и более короткое решение. Начальный импульс зонда 0. Импульс, который имеют все частицы после выпуска («уносимый импульс»), равен . Этот импульс не зависит от стратегии выпуска частиц. После захвата зондом всех частиц его масса удвоится, и импульс зонда станет равным . Запишем закон сохранения импульса с использованием этих данных:

.

Конечная скорость зонда определяется соотношением: , при любой стратегии. Частицы можно выпускать произвольными долями.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: