Якщо
,
,
— кути нормалі до вибраної сторони поверхні з осями
і
, то

тобто поверхневий інтеграл 2-го роду, що стоїть зліва, перетвориться в поверхневий інтеграл 1-го роду, що стоїть справа.
Поверхневий інтеграл

має для різних незамкнутих поверхонь
і
з однією і тією ж границею
у загальному випадку різні значення (Рис. 3), тобто він в загальному випадку не обертається в нуль на замкнутій поверхні (аналогічно залежності від шляху криволінійного інтеграла). Якщо функції

неперервні в однозв'язній просторовій області
(тобто в області, яка разом з кожною замкнутою поверхнею містить також і область, обмежену цією поверхнею), то поверхневий інтеграл по всякій замкнутій поверхні
в
обертається в нуль тоді і тільки тоді, коли







