Свойство: Интегративные качества

Существование интегративных качеств (свойств), т.е. таких качеств, которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Примеры СС в экономической сфере многочисленны: организационно — производственная система, предприятие; социально — экономическая система, например регион; и др.

СС, как объект моделирования, имеет следующие характерные особенности:

СС, как правило, уникальны. Существующие аналоги таких объектов заметно отличаются друг от друга. Следствием этого на практике является необходимость строить новые модели.

Слабая структурированность теоретических и фактических знаний о системе. Так как изучаемые системы уникальны, то процесс накопления и систематизации знаний о них затруднен. Слабо изучены сами процессы. При идентификации сложных систем присутствует большая доля субъективных экспертных знаний о системе. СС слабопредсказуемы или контриинтуитивны, как писал Форрестер.

Рассмотренные выше интегративные качества СС предопределяют важный методологический вывод: СС не сводится к простой совокупности элементов, расчленяя СС на отдельные части, изучая каждую из них в отдельности, нельзя познать свойства системы в целом. Поэтому описание отдельных подсистем необходимо выполнять с учетом их места во всей системе в целом, и наоборот, система в целом исследуется исходя из свойств отдельных подсистем. Одну из основных черт сложных систем составляет взаимодействие выделенных подсистем. Необходимо учитывать результат воздействия одной подсистемы на другую и их взаимодействие с внешней средой. Исследователи отмечают наличие большого числа взаимосвязанных подсистем, многомерность СС, обусловленную большим числом связей между подсистемами, что затрудняет идентификацию моделируемых объектов. Отметим также, что расчленение СС на подсистемы зависит от целей создания системы и взглядов исследователя на нее.

Разнородность подсистем и элементов, составляющих систему. Это определяется и многообразием природы (физической разнородностью подсистем, имеющих различную природу), и разнородностью математических схем, описывающих функционирование различных элементов, а также одних и тех же элементов на различных уровнях изучения.

Присутствует необходимость исследовать систему в динамике, с учетом поведенческих аспектов.

Случайность и неопределенность факторов, действующих в изучаемой системе. Учет этих факторов приводит к резкому усложнению задач и увеличивает трудоемкость исследований (необходимость получения представительного набора данных). Существует необходимость учета большого количества действующих в системе факторов.

Многокритериальность оценок процессов, протекающих в системе. Невозможность однозначной оценки (выбора единого обобщенного критерия) диктуется следующими обстоятельствами:

наличием множества подсистем, каждая из которых, вообще говоря, имеет свои цели, оценивается по своим локальным критериям;

множественностью показателей (при системном подходе иногда противоречивых, вэтом случае, выбирается компромиссный вариант), характеризующих работу всей системы;

наличием неформализуемых критериев, используемых при принятии решений, основанных на практическом опыте лиц, принимающих решение.

При системном подходе процесс исследования СС носит итерационный характер. Исходная модель усложняется путем детализации. Однако создание полной модели СС (супермодели) бесполезно, т.к. она будет столь же сложна в изучении, как и система. Следствием этого является необходимость использования ансамбля (комплекса) моделей при анализе системы. Различные модели могут отражать как разные стороны функционирования системы, так и разные уровни отображения исследователем одних и тех же процессов.

Рассмотренные особенности исследования сложных систем обуславливают потребность в специальных способах построения и анализа моделей сложных систем. Традиционные аналитические модели здесь беспомощны -нужны специальные компьютерные технологии.

Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа — компьютерное моделирование. Имитационное моделирование является наиболее эффективным и универсальным вариантом компьютерного моделирования в области исследования и управления сложными системами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: