Электротехническая керамика (изоляторы). Свойства и применение

Электроизоляционная керамика представляет собой материал, получаемый из формовочной массы заданного химического состава из минералов и оксидов металлов. Любая керамика, в том числе и электроизоляционная,— материал многофазный, состоящий из кристаллической, аморфной и газовой фаз. Ее свойства зависят от химического и фазового составов, макро- и микроструктуры и от технологических приемов изготовления.

В электрической и радиоэлектронной промышленности керамическая технология широко применяется для изготовления диэлектрических, полупроводниковых, пьезоэлектрических, магнитных, металлокерамических и других изделий. В настоящее время, особенно с проникновением в быт электронной техники, из электроизоляционной керамики изготавливаются десятки тысяч наименований изделий массой от десятых долей грамма до сотен килограммов и размерами от нескольких миллиметров до нескольких метров. В ряде случаев изделия из керамики, главным образом из электрофарфора, покрываются глазурями, что уменьшает возможность загрязнения, улучшает электрические и механические свойства, а также внешний вид изделия.

Электрофарфор является основным керамическим материалом, используемым в производстве широкого ассортимента низковольтных и высоковольтных изоляторов и других изоляционных элементов с рабочим напряжением до 1150 кВ переменного и до 1500 кВ постоянного тока.

Преимущества электрокерамики перед другими электроизоляционными материалами состоят в том, что из нее можно изготовлять изоляторы сложной конфигурации, кроме того она имеет широкий интервал спекания. Сырьевые материалы мало дефицитны, технология изготовления изделий относительно проста. Электрофарфор обладает достаточно высокими электроизоляционными, механическими, термическими свойствами в области рабочих температур; он выдерживает поверхностные разряды, слабо подвержен старению, стоек к воздействию атмосферных осадков, многих химических веществ, солнечных лучей и радиационных излучений.

В связи с передачей энергии высоким и сверхвысоким напряжением на дальнее расстояние резко возросли требования к качеству высоковольтных изоляторов, главным образом к механической прочности.

В последние годы выпускаются надежные высокопрочные изоляторы оптимизированной конструкции из электрофарфора высокого качества. Известно, что прочность фарфора при сжатии в 10—20 раз выше прочности при изгибе или растяжении.

По назначению компоненты фарфора различаются на пластичные и отощающие, а по роли при термической обработке — на плавни и кристаллорбразующие.

Механическая прочность фарфора в значительной степени зависит от механических свойств и кристаллической структуры отощающего материала, а также образованных в процессе обжига сетчатых волокнистых микроструктур кристаллической фазы (в частности, игл муллита). Стеклофаза в структуре фарфора ухудшает механическую прочность, так же как и наличие пор, неблагоприятно влияющих на распределение напряжений.

Наравне с обычным фарфором налажен выпуск фарфора с повышенным содержанием муллита, фарфор кристобалитовый и корундовый. В последнем кремнезем в шихте частично заменен корундом.

Наиболее перспективным является корундовый фарфор.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: