Производные высших порядков, ряд Тейлора

Если функция f:ХàR,xÎR,дифференцируема в "xÎX,то на множестве X возникает функция f ¢:XàR,значение которой в точке xÎX равно производной f ¢ (x).Если же функция f ¢:XàR имеет производную (f ¢)¢:XàR на множестве x,то (f ¢)¢(x) называется второй производной функции f(x) и обозначается f ²(x) или . Если f ²(x) имеет производную (f ²(x))¢,то эта производная называется третьей производной функции f(x) или производной третьего порядка функции f(x) и обозначаются одним из символов f ²¢(x),f(3)(x),

Производная n -го порядка является производной от производной

(n -1) порядка, т.е.

f(n)=(f(n-1))/ (x)

Производные, начиная со второй, называются производными высших порядков и обозначаются у/////(4),…у(n),

Производные n-го порядка некоторых элементарных функций:

1. ( x)(n)= xlnnx ()

2. (sinx)(n)=

3. (xm)(n)=m(m-1)…(m-n+1)xm-n

4. (ex)(n)=ex

5. (cosx)(n)=

6. (lnx)(n)=

Если функции u=j(x) и v=y(x) имеют производные n-го порядка (n- кратно дифференцируемы),

(1)

Пример 1: Вычислить n -ю производную (n ³2) функции y=x2cosx.

Решение: полагая u=cosx и v=x2, найдем

u(n)=cos(x+nп/2), v'=2x, v''=2,v''''=v(4)=…=0.

Подставляя в формулу (1), получаем

y(n)=c0ncos(x+nп/2)x2+c1ncos(x+(n-1)п/2)2x+c2ncos(x+(n-2)п/2)2

Формула (1) называется формулой Лейбница.

Опр. Функция у называется заданной параметрически, если зависимость между у и х задана системой уравнений

,tÎT

 
 

Производные этой функции могут быть найдены по формулам:

Пример 2. Найти производные от функции y=y(x), заданной параметрически если x=acost, y=asint

Решение:

Формула Тейлора. Пусть функция f(x) имеет в точке а и некоторой ее окрестности производные порядка n+1. Пусть х-любое значение аргумента из указанной окрестности, х= а. Тогда между точками а и х найдется точка x такая, что справедлива следующая формула:

Частный, простейший вид формулы Тейлора при а =0 принято называть формулой Маклорена:

Пример 3. Разложить в ряд Тейлора функции у=1/х при а =-2.

Решение: вычисляем значения данной функции и ее производных при х= а =-2

Подставляя эти значения в формулу Тейлора для произвольной функции, получим

ВАРИАНТЫ.

1. Найти

2. Доказать, что функция у удовлетворяет соотношению:

3. Используя формулу Лейбница, найти:

4. Используя формулу Тейлора, разложить функцию y= f (x) по степеням (х-х );


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: