Интегрирование по частям

Здесь используют формулу:

Пример11. Найти интеграл: . Решение:

Пример12. Найдите интеграл: . Решение:

Пример 13. Найдите интеграл:

Определенный интеграл.

Понятие определенного интеграла. Пусть функция определена на отрезке . Допустим для простоты, что функция в указанном промежутке неотрицательна и . Разобьем этот отрезок на n частей точками . На каждом из частичных отрезков (i =1, 2, 3, …, n) возьмем произвольную точку и составим сумму:

,

где . Эта сумма носит название интегральной суммы функции на отрезке .

Геометрически (рис. 10) каждое слагаемое интегральной суммы равно площади прямоугольника с основанием и высотой , а вся сумма равна площади «ступенчатой фигуры», получающейся объединением всех указанных выше прямоугольников.

Рисунок 10

Очевидно, что при всевозможных разбиениях отрезка на части получим различные интегральные суммы, а, следовательно, и различные «ступенчатые фигуры».

Будем увеличивать число точек разбиения так, чтобы длина наибольшего из отрезков стремилась к нулю. Во многих случаях при таком разбиении интегральная сумма будет стремиться к некоторому конечному пределу, не зависящему ни от способа, каким выбираются точки деления , ни от того, как выбираются точки .

Этот предел и называется определенным интегралом от функции на отрезке .

Определенным интегралом от функции на отрезке называется предел, к которому стремится интегральная сумма при стремлении к нулю длины наибольшего частичного интервала. Он обозначается символом и читается «интеграл от a и b от функции по » или, короче, «интеграл от a и b от функции ».

По определению,

.

Число a называется нижним пределом интегрирования, число b – верхним; отрезок - отрезком интегрирования.

Заметим, что всякая непрерывная на отрезке функция интегрируема на отрезке.

Если интегрируемая на отрезке функция неотрицательна, то определенный интеграл численно равен площади S криволинейной трапеции aABb, ограниченной графиком функции , осью абсцисс и прямыми и (рис. 10), т.е. . В этом и заключается геометрический смысл определенного интеграла.

Основные свойства определенного интеграла. Все свойства сформулированы в предположении, что рассматриваемые функции интегрируемы в соответствующих промежутках.

1. Определенный интеграл с одинаковыми пределами равен нулю:

2. При перестановке пределов интегрирования знак интеграла меняется на противоположный:

.

3. Отрезок интегрировании можно разбивать на части:

, где

4. Постоянный множитель можно выносить за знак интеграла:

5. Интеграл от алгебраической суммы функций равен такой же алгебраической сумме интегралов от всех слагаемых:

Непосредственное вычисление определенного интеграла. Для вычисления определенного интеграла, когда можно найти соответствующий интеграл, служит формула Ньютона-Лейбница

,

Т.е. определенный интеграл равен разности значений любой первообразной функции при верхнем и нижнем пределах интегрирования.

Из этой формулы виден порядок вычисления определенного интеграла:

1) найти неопределенный интеграл от данной функции;

2) в полученную первообразную подставить вместо аргумента сначала верхний, затем нижний предел интеграла;

3) из результата подстановки верхнего предела вычесть результат подстановки нижнего предела.

Пример 14. Вычислить интеграл .

Решение. Применив указанное правило, вычислим данный определенный интеграл:

Пример 15. Вычислить интеграл .

Решение. Воспользуемся определением степени с дробным и отрицательным показателем и вычислим определенный интеграл:

Пример 16. Вычислить интеграл .

Решение. Интеграл от разности функций заменим разностью интегралов от каждой функции:

.

Пример 17. Вычислить интеграл .

Решение. Воспользуемся определением степени с дробным показателем, правилом деления суммы на число и вычислим определенный интеграл от каждого слагаемого отдельно:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: