double arrow

Оценивание параметров распределения

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем:

Имеется: выборка наблюдений (x1, x2, …, xn) за случайной величиной Х. Объем выборки n фиксирован.

Известен вид закона распределения величины Х, например, в форме плотности распределения f(T, x), где T – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку q параметра T закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод максимального правдоподобия

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x1, x2, …, xn). Эта вероятность равна f(х1, T) f(х2, T) … f(хп, T) dx1 dx2 … dxn.

Совместная плотность вероятности

L(х1, х2 …, хn; T) = f(х1, T) f(х2, T) … f(хn, T),

рассматриваемая как функция параметра T, называется функцией правдоподобия.

В качестве оценки q параметра T следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

¶ L/¶ q = 0. В целях упрощения вычислений переходят от функции правдоподобия к ее логарифму ln L. Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина q =(q 1, q 2, …, q n), то оценки максимального правдоподобия находят из системы уравнений

¶ ln L(q 1, q 2, …, q n) /¶ q 1 = 0;

¶ ln L(q 1, q 2, …, q n) /¶ q 2 = 0;

.........

¶ ln L(q 1, q 2, …, q n) /¶ q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках. Оценка инвариантна относительно преобразования параметра, т.е. оценка некоторой функции j (Т) от параметра Т является эта же функция от оценки j (q). Если функция максимального правдоподобия имеет несколько максимумов, то из них выбирают глобальный.

Метод моментов

Метод предложен К. Пирсоном в 1894 г.

Сущность метода: выбирается столько эмпирических моментов, сколько требуется оценить неизвестных параметров распределения. Желательно применять моменты младших порядков, так как погрешности вычисления оценок резко возрастают с увеличением порядка момента;

вычисленные по ЭД оценки моментов приравниваются к теоретическим моментам;

параметры распределения определяются через моменты, и составляются уравнения, выражающие зависимость параметров от моментов, в результате получается система уравнений. Решение этой системы дает оценки параметров распределения генеральной совокупности.

Метод моментов позволяет получить состоятельные, достаточные оценки, они при довольно общих условиях распределены асимптотически нормально. Смещение удается устранить введением поправок. Эффективность оценок невысокая, т.е. даже при больших объемах выборок дисперсия оценок относительно велика (за исключением нормального распределения, для которого метод моментов дает эффективные оценки). В реализации метод моментов проще метода максимального правдоподобия. Напомним, что метод целесообразно применять для оценки не более чем четырех параметров, так как точность выборочных моментов резко падает с увеличением их порядка.

Метод квантилей

Сущность метода квантилей схожа с методом моментов: выбирается столько квантилей, сколько требуется оценить параметров; неизвестные теоретические квантили, выраженные через параметры распределения, приравниваются к эмпирическим квантилям. Решение полученной системы уравнений дает искомые оценки параметров.

Дисперсия D(xa) выборочной квантили обратно пропорциональна квадрату плотности распределения D(xa)=[a (1–a)]/[nf 2(xa)] в окрестностях точки xa. Поэтому следует выбирать квантили вблизи тех значений х, в которых плотность вероятности максимальна.

Метод квантилей позволяет получить асимптотически нормальные оценки, однако они несут в себе некоторый субъективизм, связанный с относительно произвольным выбором квантилей. Эффективность оценок не выше метода моментов. Определение оценок может приводить к необходимости численного решения достаточно сложных систем уравнений.

Оценки, вычисленные на основе различных методов, различаются. Универсального ответа на вопрос, какой из рассмотренных методов лучше или следует ли положиться на данный метод при решении любой задачи, нет. Значение оценки в каждом конкретном случае (для разных выборок) отличается от истинного значения параметра на неизвестную величину, иначе говоря, существует некоторая доля неопределенности в знании действительного значения параметра. Качество оценок можно определить косвенно путем проверки согласованности эмпирических данных и теоретического закона распределения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: