Динамика твердого тела

Вращение вокруг неподвижной оси. Момент импульса твердого тела относительно неподвижной оси вращения равен

Направление проекции совпадает с направлением т.е. определяется по правилу буравчика. Величина

называется моментом инерции твердого тела относительно Продифференцировав , получим

Это уравнение называют основным уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вычислим еще кинетическую энергию вращающегося твердого тела:

 

и работу внешней силы при повороте тела:

Плоское движение твердого тела. Плоское движение есть суперпозиция поступательного движенияцентра масс и вращательного движения в системе центра масс (см. разд. 1.2). Движение центра масс описываетсявторым законом Ньютона и определяется результирующей внешней силой (уравнение (11)).Вращательное движение в системе центра масс подчиняется уравнению (39), в котором надо учитывать только реальные внешние силы, так как момент сил инерции относительно центра масс равен нулю (аналогично моменту сил тяжести, пример 1 из разд. 1.6). Кинетическая энергия плоского движения равна уравнение Момент импульса относительно неподвижной оси, перпендикулярной плоскости движения, вычисляется по формуле (см. уравнение где — плечо скорости центра масс относительно оси, а знаки определяются выбором положительного направления вращения.

Движение с неподвижной точкой. Угловая скорость вращения, направленная вдоль оси вращения, меняет свое направление как в пространстве, так и по отношению к самому твердому телу. Уравнение движения

 

которое называют основным уравнением движения твердого тела с неподвижной точкой, позволяетузнать, как изменяется момент импульсаТак как вектор в общем случае не параллелен вектору то для

Рис. 11.

замыкания уравнений движения надо научиться связывать эти величины друг с другом.

Рис. 12.

Гироскопы. Гироскопом называют твердое тело, быстро вращающееся относительно своей оси симметрии. Задачу о движении оси гироскопа можно решать в гироскопическом приближении: оба вектора направлены вдоль оси симметрии. Уравновешенный гироскоп (закрепленный в центре масс) обладает свойством безынерционно его ось перестает двигаться, как только исчезает внешнее воздействие ( обращается в нуль). Это позволяет использовать гироскоп для сохранения ориентации в пространстве.

На тяжелый гироскоп (рис. 12), у которого центр масс смещен на расстояние от точки закрепления действует момент силы тяжедти, направленный перпендикулярно Так как то и ось гироскопа совершают регулярное вращение вокруг вертикальной оси (прецессия гироскопа).

Конец вектора вращается по горизонтальной окружности радиусом а с угловой скоростью

Угловая скорость прецессии не зависит от угла наклона оси а.

Зако́нысохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

 

· Закон сохранения энергии

· Закон сохранения импульса

· Закон сохранения момента импульса

· Закон сохранения массы

· Закон сохранения электрического заряда

· Закон сохранения лептонного числа

· Закон сохранения барионного числа

· Закон сохранения чётности

Момент силы

Моментом силы относительно оси вращения называется физическая величина, равная про­изведению силы на ее плечо.

Момент силы определяют по формуле:

М - FI, где F — сила, I — плечо силы.

Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить,

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м — ньютон-метр (Н • м).

Правило моментов

Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М,, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:

М1 = -М2 или F 1 ll = - F 2 l 2.

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары, независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:

M = Fll + Fl2=F(l1 + l2) = Fl.

 

13.Кинетическая энергия вращающегося тела.

 

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:
, (6.4.1)  

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i -й точки, Ri – расстояние до оси вращения. Следовательно,

  , (6.4.2)  

Сопоставив (6.4.1) и (6.4.2), можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.
В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

  , (6.4.3)  

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Работа момента сил.

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где — перемещение тела, — сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где — момент силы, — угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: