Покрытые электроды для ручной дуговой сварки

Покрытые электроды для ручной сварки представляют собой стержни длиной, как правило, от 250 до 700 мм, изготовленные из сварочной проволоки с нанесенным на нее слоем покрытия. Один из концов электрода длиной 20–30 мм не имеет покрытия для его крепления в электрододержателе.

Сварочные электроды должны обеспечивать:

  • устойчивое горение дуги, равномерное плавление металла и стабильный перенос его в сварочную ванну;
  • достаточную защиту расплавленного электродного металла и металла сварочной ванны от воздуха;
  • получение металла шва требуемого химического состава и механических свойств;
  • хорошее формирование шва, минимальные потери на угар и разбрызгивание;
  • возможно высокую производительность процесса сварки;
  • хорошую отделимость и легкую удаляемость шлака с поверхности шва;
  • достаточную стойкость покрытий против механических повреждений (осыпание, откалывание при относительно легких ударах, в процессе нагрева электрода при сварке и др.) и недопустимость резкого ухудшения свойств в процессе хранения;
  • минимальную токсичность газов, выделяющихся при сварке, соблюдение санитарно-гигиенических норм.

Данные требования обеспечиваются благодаря подбору компонентов покрытия электрода. Вещества, из которых состоит покрытие, включают в себя:

Газообразующие компоненты обеспечивают газовую защиту зонысварки от воздуха. При нагревании они разлагаются с выделением газов, вытесняющих воздух. В качестве газообразующих компонентов обычно выступают вводимые в покрытие минералы (мрамор, магнезит) или органические вещества (мука, крахмал, декстрин).

Шлакообразующие компоненты обеспечивают шлаковую защиту расплавленного и кристаллизующегося металла от воздуха. При расплавлении они образуют шлак, который всплывает на поверхность сварочной ванны. Шлаком также покрыты капли электродного металла. Шлакообразующие компоненты (кислые окислы SiO2, TiO2, Al2O3; основные окислы CaO, MnO, MgO; галогены CaF2) содержатся в мраморе, граните, гематите, кварцевом песке, рудах, ильменитовом и

Раскисляющие составляющие необходимы для раскисления расплавленного металла сварочной ванны. К ним относятся элементы, которые обладают большим сродством к кислороду, чем железо: марганец, кремний и др.

Легирующие элементы необходимы в составе покрытия для придания металлу шва специальных свойств: жаростойкости, износостойкости, сопротивления коррозии и повышения механических свойств. Легирующими элементами служат марганец, хром, титан, ванадий, молибден, никель, вольфрам и другие элементы.

Стабилизирующими составляющими являются те элементы, которые имеют небольшой потенциал ионизации (калий, натрий и кальций), поддерживая этим горение дуги и облегчая её загорание при непрерывном изменении полярности переменного тока.

Связующие (клеящие) составляющие применяют для связывания составляющих покрытий между собой и со стержнем электрода. В качестве них применяют калиевые или натриевое жидкое стекло, декстрин, желатин и др.

В зависимости от используемого подхода выделяют четыре базовых типа покрытия.

Кислое покрытие (обозначается по ГОСТ 9466-75 буквой «А») создается на основе материалов рудного происхождения. В качестве шлакообразующих компонентов используются оксиды, газообразующих – органические составляющие. При плавлении покрытия в расплавленном металле и в зоне горения дуги выделяется большое количество кислорода. Поэтому в покрытие добавляют много раскислителей – марганца и кремния.

Преимущества кислого покрытия электродов:

  • низкая склонность к образованию пор при удлинении дуги и при сварке металла с окалиной и ржавыми кромками;
  • высокая производительность сварки за счет выделения теплоты при окислительных реакциях;
  • стабильное горение дуги при сварке на постоянном и переменном токе.

К недостаткам этого покрытия относятся пониженные пластичность и ударная вязкость металла шва, что связано с невозможностью легирования шва из-за окисления легирующих добавок. Ввиду отсутствия в покрытии кальция в металле шва присутствуют сера и фосфор, повышающие вероятность образования кристаллизационных трещин. Одним из главных недостатков данного покрытия является выделение большого количества вредных примесей вследствие повышенного содержания в аэрозолях соединений марганца и кремния. Поэтому сварочные электроды с кислым покрытием используются в последнее время редко.

Область применения электродов с кислым покрытием – сварка неответственных конструкций из низкоуглеродистых сталей.

Основное покрытие (обозначается по ГОСТ 9466-75 буквой «Б») создается на основе фтористых соединений (плавиковый шпат CaF2), а также карбонатов кальция и магния (мрамор CaCO3, магнезит MgCO3 и доломит CaMg(CO3)2). Газовая защита осуществляется за счет углекислого газа, который выделяется при разложении карбонатов:

CaCO3 → CaO + CO2

С помощью кальция металл шва хорошо очищается от серы и фосфора. Фтор вводится в ограниченных количествах (чтобы сохранить стабильность горения дуги) и связывает водород и пары воды в термические стойкие соединения:

CaF2 + H2O → CaO + 2HF
2CaF2 + 3SiO2 → 2CaSiO3 + SiF4
SiF4 + 3H → SiF + 3HF

Из-за низкого содержания водорода в металле шва сварочные электроды с основным покрытием также называют «низководородными».

Преимущества основного покрытия электродов:

  • низкая вероятность образования кристаллизационных трещин, высокая пластичность и ударная вязкость металла шва, обусловленные малым содержанием в наплавленном металле кислорода и водорода, а также его хорошим рафинированием;
  • высокая стойкость против хладноломкости – появлению или возрастанию хрупкости с понижением температуры;
  • широкие возможности легирования ввиду низкой окислительной способности покрытий;
  • меньшая токсичность по сравнению с кислыми покрытиями;
  • повышенный коэффициент наплавки при введении железного порошка.

Недостатки основного покрытия:

  • склонность к образованию пор при увеличении длины дуги, повышении влажности покрытия, наличии ржавчины и окалины на свариваемых кромках, что требует более высокой квалификации сварщика, а также необходимости в предварительной очистке кромок и прокалке электродов перед сваркой;
  • более низкая устойчивость горения дуги из-за фтора, имеющего высокий потенциал ионизации, в связи с чем сварку электродами с основным покрытием обычно выполняют короткой дугой на постоянном токе обратной полярности.

Область применения электродов с основным покрытием:

  • сварка ответственных конструкций из углеродистых сталей, работающих при знакопеременных нагрузках или отрицательных температурах до -70°C;
  • сварка конструкционных, жаропрочных, коррозионно-стойких, окалиностойких, а также других специальных сталей и сплавов;
  • сварка легированных сталей.

В связи с присутствием в аэрозолях фтористых соединений при сварке в закрытом помещении необходимо обеспечение качественной вентиляции воздуха, а сварщикам рекомендуется работать со средствами индивидуальной защиты дыхательных органов или с подачей чистого воздуха в зону дыхания.

Известные марки сварочных электродов с основным покрытием: ESAB OK 48.00 (слева) и УОНИ 13/55 российских производителей (справа)

Рутиловое покрытие (обозначается по ГОСТ 9466-75 буквой «Р») создается на базе рутилового концентрата TiO2, обеспечивающего шлаковую защиту, а также алюмосиликатов (полевой шпат, слюда, каолин) и карбонатов (мрамор, магнезит). Газовую защиту обеспечивают карбонаты и органические соединения (целлюлоза). В качестве легирующего компонента и раскислителя используется ферромарганец, в некоторые покрытия вводится железный порошок (обозначаются по ГОСТ 9466-75 буквами «РЖ»). С помощью кальция, присутствующего в карбонате CaCO3, из металла шва удаляются сера и фосфор.

Преимущества сварочных электродов с рутиловым покрытием:

  • более высокий коэффициент наплавки при введении железного порошка;
  • низкая токсичность;
  • по сравнению с электродами с основным покрытием – стабильность горения дуги при сварке на постоянном и переменном токе, более высокая стойкость против образования пор, лучшее формирование шва с плавным переходом к основному металлу, меньшая чувствительность к увеличению длины дуги, меньше коэффициент разбрызгивания металла, более удобная сварка в вертикальном и потолочном положениях (при отсутствии в них железного порошка или его содержании менее 20%).

Недостатки электродов с рутиловым покрытием:

  • пониженные пластичноcть и ударная вязкость металла шва из-за включений SiO2;
  • не используются для сварки конструкций, работающих при высоких температурах;
  • по сравнению с электродами с основным покрытием – меньшее сопротивление наплавленного металла сероводородному растрескиванию, приводящего к разрушению сварных трубопроводов в месторождениях с сероводородными соединениями; ниже стойкость против кристаллизационных трещин; сильнее окисляют легирующие элементы и железо и поэтому не используются для сварки средне- и высоколегированных сталей; повышенное содержание фосфора в наплавленном металле и склонность к хладноломкости.

Область применения сварочных электродов с рутиловым покрытием:

  • сварка и наплавка ответственных конструкций из низкоуглеродистых и некоторых типов низколегированных сталей, за исключением конструкций, работающих при высоких температурах;
  • в ряде случаев для сварки среднеуглеродистых сталей, если в покрытии содержится большое количество железного порошка.

Целлюлозное покрытие (обозначается по ГОСТ 9466-75 буквой «Ц») создается на основе органических соединений (до 50%) – целлюлозы, муки, крахмала, обеспечивающих газовую защиту. Для шлаковой защиты в небольшом количестве применяются рутиловый концентрат, мрамор, карбонаты, алюмосиликаты и другие вещества. На сварном шве образуется тонкий слой шлака. Легирование наплавленного металла выполняется легирующими добавками стержня, а также за счет добавления в покрытие ферросплавов и металлических порошков. В качестве раскислителей используют ферросплавы марганца. Металл шва по химическому составу соответствует полуспокойной или спокойной стали.

Преимущества сварочных электродов с целлюлозным покрытием:

  • качественный провар корня шва;
  • возможность сварки в труднодоступных местах в связи с малой толщиной покрытия;
  • сварка во всех пространственных положениях.

Недостатки целлюлозного покрытия:

  • повышенное разбрызгивание (до 15%) из-за небольшого количества шлакообразующих компонентов и высокого поверхностного натяжения расплавленного металла;
  • повышенное количество водорода в металле шва.

Область применения электродов с целлюлозным покрытием – сварка первого (труднодоступного) слоя неповоротных стыков трубопроводов.

 

Тип покрытия Обозначение по ГОСТ 9466-75 Международное обозначение ISO    
кислое А A    
основное Б B    
рутиловое Р R    
целлюлозное Ц C    
Классификация электродов по назначению и допустимым пространственным положениям сварки: Согласно ГОСТ 9466- 75, электроды разделяются по назначению: -для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 600 МПа - У; -для сварки легированных конструкционных сталей с временным сопротивлением разрыву свыше 600 МПа - Л; -для сварки легированных теплоустойчивых сталей - Т; -для сварки высоколегированных сталей с особыми свойствами - В; -для наплавки поверхностных слоев с особыми свойствами - Н. По допустимым пространственным положения сварки или наплавки электроды подразделяются: для всех положений -1; для всех положений, кроме вертикального сверху вниз, - 2; для нижнего, горизонтального и вертикального снизу в верх -3; для нижнего и нижнего ≪в лодочку≫ - 4. Типы электродов для сварки конструкционных сталей обозначают буквой Э, после которой следуют цифры минимального временного сопротивления наплавленного этим электродом металла в кг/мм2. Например: электроды Э42 должны гарантировать минимальное временное сопротивление 42 кг/мм2. Буква А, стоящая после цифр (например, Э46А) означает, что электроды этого типа обеспечивают более высокие пластические свойства наплавленного металла, чем электроды без буквы А. Каждому типу электродов для сварки сталей соответствует несколько марок электродов, особенно много марок разработано и выпускается для сварки конструкционных сталей. Например, к типу электродов Э46А относятся электроды марки УОНИИ-13/45, СМ-11 и др. Например: Э46А – УОНИ-13/45 – 3.0 – УД Е – 432 (5) – Б20 – ГОСТ 9466, ГОСТ 9467 В числителе последовательно: тип электрода (Э46А), марка (УОНИ–13/45), диаметр (3.0мм), класс (У - для углеродистых сталей), обозначение толщины покрытия (Д - толстое). В знаменателе последовательно: Е - группа индексов, указывающих характеристики наплавленного металла или металла шва по ГОСТ 9467, 43 - обозначает предел прочности, σв= 430 МПа, 2 - обозначает относительное удлинение, δ = 22 %, 5 - обозначает температуру хладноломкости, при которой определяется ударная вязкость. обозначение вида покрытия (Б – основное), обозначение допустимого пространственного положения сварки (2- для всех положений, кроме вертикального сверху вниз), обозначение рода и полярности сварочного тока (О - постоянный ток обратной полярности). обозначение стандарта ГОСТ 9466 и обозначение стандарта на данный класс электродов (ГОСТ 9467).   Классификация сталей по свариваемости. Свариваемостью называют свойство металла или сочетания металлов образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия. ОПРЕДЕЛЕНИЕ СВАРИВАЕМОСТИ ГОСТ 29273-92, ИСО 581-80 Металлический материал считается поддающимся сварке до установленной степени при данных процессах и для данной цели, когда сваркой достигается металлическая целостность при соответствующем технологическом процессе, чтобы свариваемые детали отвечали техническим требованиям, как в отношении их собственных качеств, так и в отношении их влияния на конструкцию, которую они образуют. На свариваемость стали наибольшее влияние оказывают легирующие элементы, входящие в состав стали. Влияние основных легирующих элементов на свариваемость сталей: Углерод (С) – один из важнейших химических элементов, определяющий свариваемость, прочность, пластичность, закаливаемость и др. характеристики стали. Содержание углерода в сталях до 0,25% не снижает свариваемости. Более высокое содержание "С" приводит к образованию закалочных структур в металле зоны термического влияния (далее по тексту – ЗТВ) и появлению трещин. Сера (S) и фосфор (P) – вредные примеси. Повышенное содержание "S" приводит к образованию горячих трещин – красноломкость, а "P" вызывает хладноломкость. Поэтому содержание "S" и "P" в низкоуглеродистых сталях ограничивают до 0,4÷0,5%. Кремний (Si) присутствует в сталях в количестве до 0,3% в качестве раскислителя. При таком содержании "Si" свариваемость сталей не ухудшается. В качестве легирующего элемента при содержании "Si" – до 0,8÷1,0% (особенно до 1,5%) возможно образование тугоплавких оксидов "Si", ухудшающих свариваемость. Марганец (Mn) при содержании в стали до 1,0% – процесс сварки не затруднен. При сварке сталей с содержанием "Mn" в к-ве 1,8÷2,5% возможно появление закалочных структур и трещин в металле ЗТВ. Хром (Cr) в низкоуглеродистых сталяхограничиваетсяв количестве до 0,3%. В низколегированных сталях возможно содержание хрома в пределах 0,7÷3,5%. В легированных сталях его содержание колеблется от 12% до 18%, а в высоколегированных сталях достигает 35%. При сварке хром образует карбиды, ухудшающие коррозионную стойкость стали. Хром способствует образованию тугоплавких оксидов, затрудняющих процесс сварки. Никель(Ni)аналогично хрому содержится в низкоуглеродистых сталях в количестве до 0,3%. В низколегированных сталях его содержание возрастает до 5%, а в высоколегированных – до 35%. В сплавах на никелевой основе его содержание является основным. Никель увеличивает прочностные и пластические свойства стали, оказывает положительное влияние на свариваемость. Ванадий(V)в легированных сталях содержится в количестве 0,2÷0,8%. Он повышает вязкость и пластичность стали, улучшает ее структуру, способствует повышению прокаливаемости. Молибден (Мо)в сталях ограничивается 0,8%. При таком содержании он положительно влияет на прочностные показатели сталей и измельчает ее структуру. Однако при сварке он выгорает и способствует образованию трещин в наплавленном металле. Титан и ниобии (Ti и Nb)в коррозионностойких и жаропрочных сталях содержатся в количестве до 1%. Они снижают чувствительность стали к межкристаллитной коррозии, вместе с тем ниобий в сталях типа 18-8 способствует образованию горячих трещин. Медь (Си)содержится в сталях в количестве до 0,3% включительно, как добавка в низколегированных сталях 0,15 -0,5% и как легирующий элемент до 0,8÷1%. Онаповышает коррозионные свойства стали, не ухудшая свариваемости. При оценке влияния химического состава на свариваемость стали, кроме содержания углерода, учитывается также содержание других легирующих элементов, повышающих склонность стали к закалке. Это достигается путем пересчета содержания каждого легирующего элемента стали в эквиваленте по действию на ее закаливаемость с использованием переводных коэффициентов, определенных экспериментально. Суммарное содержание в стали углерода и пересчитанных эквивалентных ему количеств легирующих элементов называется углеродным эквивалентом.  
Основные критерии, которые характеризуют свариваемость сталей – механические свойства сварного соединения и склонность к появлению трещин. При оценке влияния химического состава на свариваемость стали, кроме содержания углерода, учитывается также содержание других легирующих элементов, повышающих склонность стали к закалке. Это достигается путем пересчета содержания каждого легирующего элемента стали в эквиваленте по действию на ее закаливаемость с использованием переводных коэффициентов, определенных экспериментально. Суммарное содержание в стали углерода и пересчитанных эквивалентных ему количеств легирующих элементов называется углеродным эквивалентом.

В соответствии с ГОСТ 19281-2014 он рассчитывается по формуле:

Сэкв= С + Mn/6 + Si/24 + Cr/5 + Ni/40+ Cu/13+ V/14 + P/2

 

Где С - содержание углерода в%,

Mn, Si…-содержание легирующих элементов в %.

 

На свариваемость сталей влияют следующие факторы: содержание углерода, наличие вредных примесей, степень легирования, вид микроструктуры, условия внешней среды, толщина металла. Наиболее информативным параметром является химический состав.

 

Классификация сталей по свариваемости.

Хорошо сваривающиеся (при значении Сэкв. до 0,25%): для низкоуглеродистых стальных деталей; не зависит от толщины изделия, погодных условий, наличия подготовительных работ.

К этой группе относятся стали, сварка которых может быть произведена по обычной технологии, т.е. без подогрева до сварки и в процессе сварки и без дальнейшей термообработки. Но использование термообработки для снятия внутренних напряжений не исключено.

Удовлетворительно сваривающиеся (Сэкв = 0, 25% - 0,35%): присутствуют ограничения к условиям окружающей среды и диаметру свариваемой конструкции (температура воздуха до -5, в безветренную погоду, толщина до 20 мм).

К этой группе сталей, как правило, относятся стали, при сварке которых в нормальных производственных условиях трещины не возникают. К этому же виду принадлежат стали, которым для предупреждения появления трещин необходим предварительный нагрев, а также предварительная и последующая термическая обработка.

Ограниченно сваривающиеся (Сэкв.= 0,35% - 0,45%): для образования качественного шва необходим предварительный подогрев. Он способствует «плавным» аустенитным преобразованиям, формированию устойчивых структур (ферритно-перлитные, бейнитные).

К этой группе принадлежат стали, которые в обычных условиях сварки склонны к образованию трещин. Во время сварки их предварительно подвергают термообработке и нагревают. Кроме того, большинство сталей, относящихся к этому виду, подвергаются обработке после завершения сварки.

Плохо сваривающиеся (Сэкв≥0,45%): формирование механически стабильного сварного соединения невозможно без предварительной температурной подготовке металла, а также последующей термической обработки сваренной конструкции. Для образования нужной микроструктуры необходимы дополнительные подогревы и плавные охлаждения.

К этой группе относят стали, наиболее проблематично поддающиеся сварке и склонные к образованию трещин. Данные стали свариваются ограниченно, поэтому сварку их производят с обязательной предварительной термообработкой, с подогревом в процессе сварки и дальнейшей термообработкой.

Группы свариваемости сталей позволяют легко ориентироваться в технологических особенностях сварки конкретных марок железоуглеродистых сплавов.

 

Спец. Технология


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: