Основные свойства ЗЛП и ее Первая геометрическая интерпретация

 

1.2.1. Основные понятия линейной алгебры и выпук­лого анализа, применяемые в теории математического программирования. Кратко напомним некоторые фундамен­тальные определения и теоремы линейной алгебры и выпуклого анализа, которые широко применяются при решении проблем как линейного, так и нелинейного программирования.

Фундаментальным понятием линейной алгебры является ли­нейное (вещественное) пространство. Под ним подразуме­вается множество некоторых элементов (именуемых вектора­ми или точками), для которых заданы операции сложения и умножения на вещественное число (скаляр), причем элементы, являющиеся результатом выполнения операций, также в соот­ветствии с определением должны принадлежать исходному про­странству.

Частными случаями линейных пространств являются веще­ственная прямая, плоскость, геометрическое трехмерное про­странство.

Вектор λ1 a 1 + λ2 a 2 + …+ λm a m называется линейной комбина­цией векторов а 1 а 2,..., а m с коэффициентами λ1, λ2, λm,

Система векторов линейного пространства а 1 а 2,..., а m называется линейно зависимой, если существуют такие числа λ1, λ2, λm не равные одновременно нулю, что их линейная комбинация λ1a1 + λ2a2 + …+ λmam равняется нулевому вектору (вектору, все компоненты которого равны нулю). В против­ном случае систему а 1, а 2,..., а m называют линейно независи­мой, т. е. линейная комбинация данных векторов может быть равна нулевому вектору только при нулевых коэффициентах λ1, λ2, …, λm

Максимально возможное количество векторов, которые могут образовывать линейно независимую систему в данном линейном пространстве, называют размерностью простран­ства, а любую систему линейно независимых векторов в коли­честве, равном размерности, — базисом пространства.

Линейное пространство обычно обозначают как Rn, где n — его размерность.

Любое подмножество данного линейного пространства, ко­торое само обладает свойствами линейного пространства, назы­вается линейным подпространством. Множество Н, получае­мое сдвигом некоторого линейного подпространства L Ì Rn на вектор a Î Rn: H=L+a, называется аффинным множеством (пространством). Если фундаментальным свойством любого ли­нейного пространства или подпространства является принад­лежность ему нулевого вектора, то для аффинного множества это не всегда так. На плоскости примером подпространства явля­ется прямая, проходящая через начало координат, а аффинного множества — любая прямая на плоскости. Характеристическим свойством аффинного множества является принадлежность ему любой прямой, соединяющей две любые его точки. Размерность аффинного множества совпадает с размерностью того линейно­го подпространства, сдвигом которого оно получено.

Если рассматривается некоторое линейное пространство Rn, то принадлежащие ему аффинные множества размерности 1 на­зываются прямыми, а размерности (n -1)— гиперплоско­стями. Так, обычная плоскость является гиперплоскостью для трехмерного геометрического пространства R3, а прямая — ги­перплоскостью для плоскости R 2. Всякая гиперплоскость делит линейное пространство на два полупространства.

Множество V векторов (точек) линейного пространства Rn называется выпуклым, если оно содержит отрезок прямой, соединяющей две его любые точки, или, другими словами, из того, что a ÎV и bÎV, следует, что х = (1- λ) х а+ λ х b Î V, где 0 ≤λ≤ 1.

Линейная комбинация

 

векторов а 1, а 2... а m называется выпуклой, если λ i ≥0, iÎ1: m и

 

 

Множество, содержащее все возможные выпуклые комбинации точек некоторого множества М, называют выпуклой оболочкой данного множества. Можно показать, что выпуклая оболочка множества М является наименьшим выпуклым множеством, со­держащим М.

Выпуклая оболочка конечного множества точек называется выпуклым многогранником, а непустое пересечение конечного числа замкнутых полупространств — многогранным выпук­лым множеством. В отличие от выпуклого многогранника пос­леднее может быть неограниченным.

Точка v выпуклого множества V называется его угловой (крайней) точкой, если она не является внутренней точкой ни для какого отрезка, концы которого принадлежат множеству V. Угловые точки выпуклого многогранника являются его верши­нами, а сам он — выпуклой оболочкой своих вершин.

Множество К называется конусом с вершиной в точке x0, если x 0 Î К, и из того, что некоторая точка х принадлежит К (х Î К), следует, что в К содержится и луч, начинающийся в х0 и проходящий через х, т. е.

или

 

Выпуклая оболочка конечного множества лучей, исходя­щих из одной точки, называется многогранным выпуклым ко­нусом с вершиной в данной точке.

1.2.2. Первая геометрическая интерпретация ЗЛП и графический метод решения. Рассмотрим следующий пример. Пусть дана задача максимизации линейной целевой функции

f(x) = 3 х 1 + х 2 → max

на множестве

 

Так как количество переменных в неравенствах, задающих область допустимых планов задачи, равно двум, то ее можно изобразить на координатной плоскости (см. рис. 1.1).

На рис. 1.1 показано, что каждое неравенство определяет некоторую полуплоскость. Соответствующие области для каж­дого ограничения отмечены штрихами. Пересечение D данных полуплоскостей (т. е. множество точек, которые одновременно принадлежат каждой их них) является областью допустимых планов задачи. Поведение целевой функции f(x) = 3 х 1 + х 2 в рамках двумерной иллюстрации может быть охарактеризовано с помощью линий уровня.

Напомним, что линией уровня функции называется множе­ство точек из ее области определения, в которых функция при­нимает одно и то же фиксированное значение. Градиентом функции f(x) называется вектор

 

Δ f(x) = df,…, df

dx 1 dxn

 

указывающий направление наиболее быстрого возрастания фун­кции, и, стало быть, ориентированный перпендикулярно лини­ям уровня.

Для линейной функции двух переменных линия уровня пред­ставляет собой прямую, перпендикулярную вектору с, который служит градиентом данной функции. Следовательно, если ли­ния уровня определяется уравнением f(x)=c1x1+ c2x2 =const, то этот вектоp имеет вид

 

 

и указывает направление возрастания функции.

Таким образом, с геометрической точки зрения задача мак­симизации сводится к определению такой точки области D, че­рез которую проходит линия уровня, соответствующая наи­большему из возможных значений. Последнее означает, что для нахождения точки экстремума в задаче линейного программирования мы должны сначала построить линию уровня для некоторого произвольного значения целевой функции. Затем необходимо осуществлять ее параллельное передвижение (так, чтобы она оставалась перпендикулярной вектору с) до тех пор, пока не достигнем такой точки области допустимых планов D, из которой смещение в направлении вектора с было бы невоз­можно. Такой метод решения получил название графического. Заметим, что решение задачи поиска минимума линейной функ­ции осуществляется аналогично, с той лишь разницей, что дви­жение по линиям уровня должно производиться в направлении, обратном градиенту целевой функции, т. е. по вектору (-с).

На рис. 1.1 изображен некоторый частный случай, для кото­рого решение ЗЛП достигается в угловой точке х* = (0, 6) обла­сти D. Нетрудно представить, что возможны и другие варианты. Они изображены на рис. 1.2.

Рисунок (а) иллюстрирует ситуацию неограниченности це­левой функции f(x)=cx на множестве D, т.е. сколько бы мы ни перемещались по линиям уровня в направлении вектора с, ее значение будет возрастать.

В случае, изображенном на рисунке (b), линия уровня, со­ответствующая максимальному значению f(x), касается грани множества D, и, соответственно, все точки, лежащие на этой гра­ни, являются оптимальными планами.

Во всех рассмотренных иллюстрациях допустимые планы ЗЛП представлялись в виде некоторого многогранного выпук­лого множества на плоскости. Такое их представление в лите­ратуре получило название первой геометрической интерпре­тации задачи линейного программирования.

Заметим также, что аналогичным образом могут быть пост­роены интерпретации ЗЛП для случая трехмерного простран­ства R 3, где множеству D будет соответствовать некоторый ограниченный или неограниченный многогранник, а поведе­ние целевой функции будет характеризоваться поверхностями (плоскостями) уровня.

Несмотря на свою очевидную ограниченность, графический метод решения ЗЛП часто оказывается полезным. В частности, он может быть применен не только к задачам с двумя перемен­ными и ограничениями в виде неравенств, но и к каноническим задачам вида (1.7), у которых n - m = 2, где n — количество пе­ременных, а m — ранг матрицы А.

Действительно, можно выбрать две произвольные перемен­ные хj1,xj2 и, используя систему уравнений, выразить через них остальные переменные

 

 

 

где φj(xj 1, xj 2) —линейные функции.

Подставив выражения (1.9) в целевую функцию, мы получим эквивалентную задачу

 

при ограничениях

 

Последняя ЗЛП может быть решена графически.

1.2.3. Основные теоремы линейного программирова­ния. Рассмотрим некоторые теоремы. Отражающие фундамен­тальные свойства задач линейного программирования и лежа­щие в основе методов их решения. Они по существу обобщают на случай задач с произвольным количеством переменных те свойства, которые мы наблюдали в двумерном случае.

 

Теорема 1.1. Если целевая функция f принимает мак­симальное значение в некоторой точке множества до­пустимых планов D, то она принимает это значение и в некоторой угловой точке данного множества.

Доказательство.

Чтобы не усложнять изложение, ограничимся тем случаем, когда множество D ограничено, и, следовательно, является вы­пуклым многогранником.

Для доказательства воспользуемся следующим известным свойством ограниченных выпуклых множеств:

Если D — замкнутое ограниченное выпуклое множе­ство, имеющее конечное число угловых точек, то лю­бая точка х Î D может быть представлена в виде вы­пуклой комбинации угловых точек D*.

* Строгое доказательство данного утверждения см., например, в [14].

 

Пусть х 1, х 2,…, хm — угловые точки множества D, а х* — точка, в которой целевая функция f достигает максимума.

На основе сформулированного выше утверждения точку х* можно представить в виде выпуклой комбинации угловых то­чек х 1, х 2,..., xm

 

Так как х* — точка максимума, то для любого х Î D сх* ≥ сх. Функция f(x) — линейная, поэтому

 

 

cледовательно,

 

где xr — угловая точка, удовлетворяющая условию

 

 

Из (1.10) видно, что сх* ≤ схr. В то же время справедливо об­ратное неравенство: сх* ≥ схr. Откуда следует, что сх* = схr, т. е. существует по крайней мере одна угловая точка хr, в которой целевая функция принимает максимальное значение. A

 

Теорема 1.2. Если целевая функция f принимает мак­симальное значение в нескольких точках множества D, то она принимает это же значение в любой точке, яв­ляющейся их выпуклой комбинацией.  

Доказательство.

Пусть максимальное значение функции f достигается в точ­ках х̃ 1, х̃ 2,..., s, т. е. сх~i=f*, iÎ l :s. Рассмотрим произвольную выпуклую комбинацию этих точек

 

 

Найдем значение целевой функции в точке х*

 

 

Итак, для произвольной выпуклой комбинации х* точек х̃1, х̃ 2,..., x~s справедливо равенство

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: