Кручение стержней круглого поперечного сечения

 

Будем рассматривать случай (так называемого) нестесненного кручения, когда деформации стержня в направлении его оси не затруднены. В таком случае в поперечных сечениях стержня возникают только касательные напряжения. Этот факт можно принять за первое допущение, используемое нами в дальнейшем выводе.

Второе допущение имеет геометрический характер и состоит в том, что поперечные сечения при кручении остаются плоскими и их радиусы не искривляются.

Как показывает точное решение задачи методами теории упругости, для круглых поперечных сечений эта гипотеза выполняется абсолютно точно.

Нашей задачей будет определение напряжений и перемещений в закручиваемом стержне.

Рассмотрим произвольный стержень круглого поперечного сечения.

Выделим кольцеобразный малый элемент, а из него в свою очередь элемент m, npо который в пределе

можно считать плоским. Данный элемент содержит точку, напряженное состояние которой мы исследуем. Полярный радиус исследуемой точки .

Основываясь на первом принятом допущении, заключаем, что элемент mnpq испытывает чистый сдвиг.

Рассмотрим геометрическую сторону задачи.

При кручении поперечные сечения, между которыми заключен элемент повернутся друг относительно друга на малый угол d . Очевидно, что угол сдвига будет равен .

Величину называем относительным углом закручивания. Тогда (1).

Рассмотрим физическую сторону задачи. Будем полагать материал линейно упругим и примем закон Гука (2).

Подставим (1) в (2): (3).

Мы видим, что касательные напряжения по радиусу меняются линейно, но величина Q нам еще не известна.

Обратимся к статической стороне задачи и рассмотрим равновесие отсеченной части стержня

Интеграл - полярный момент инерции.

В результате получаем так называемую основную зависимость при кручении (4)

Величина называется жесткостью при кручении.

Подставим (4) в (3) и получим закон распределения касатель-

ных напряжений (5)

Как мы выяснили ранее, закон распределения напряжений линейных и наибольшие касательные напряжения возникают на контуре сечения при (6)

Где полярный момент сопротивления.

Выразим и через диаметр

Само собой, что закон распределения касательных напряжений осесимметричный и по каждому из радиусов напряжения распределяются одинаково.

Формула (6) дает возможность рассчитывать на прочность стержни, работающие на кручение, которые называют валами.

Условия прочности при кручении выглядит:

где [ -допускаемое напряжение на кручение.

Может стоять задача определения коэффициента запаса по текучести. Тогда , где предел текучести при кручении.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: