Давление насыщенного пара

Возьмем закрытый сосуд, в который нальем воду. Молекулы водорода, обладающие большим запасом энергии, способны выходить с поверхности воды в газовую фазу. Часть из них может возвращаться обратно в воду. С течением времени устанавливается равновесие между числом молекул вышедших в пар и вернувшихся в жидкость.

Пар, находящийся в равновесии с жидкостью, называется насыщенным, а давление, которое он при этом оказывает, называется давлением насыщенного пара ( A).

A - давление насыщенного пара на чистом растворителе.

Теперь возьмем такой же закрытый сосуд и нальем раствора, содержащего вещества А+В (нелетучие) молекулы растворенного вещества в пер не выходят, выходят молекулы растворителя. Выходит меньшее число молекул растворителя, т.к. их в растворе меньше, чем в чистом растворителе. Поэтому равновесие установится при меньшем давлении.

PA - давление насыщенного пара растворителя над раствором. Это давление всегда меньше, чем давление насыщенного пара на чистом растворителе (PA< P°A).

На основании этих опытов Рауль вывел свой закон, который имеет две формы записи, а следовательно, и две формулировки:

1) давление насыщенного пара растворителя над раствором прямо пропорционально молярной доле растворителя. PA= P°A*NA

2) вместо молярной доли растворителя необходимо ввести молярную долю растворенного вещества

NA=1-NB

PA= P°A*(1-NB)

NB=(P°A-PA)/ P°A

A-PA характеризует понижение давления насыщенного пара растворителя над раствором.

Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доли раствора.

2) температура кипения раствора – это та t, при которой давление насыщенного пара растворителя над раствором становится равным внешнему давлению.

АВ характеризует изменение давления насыщенного пара на чистом растворителе с t

СD характеризует изменение давления насыщенного пара растворителя над раствором концентрацией Сm1,с t

C’D’ характеризует изменение давления насыщенного пара растворителя над раствором концентрацией Cm2, Cm2> Сm1

Выводы:

1) все растворы кипят при t более высокой, чем чистый растворитель

2) повышение t кипения прямо пропорциональна моляльной концентрации раствора.

∆Tкк р-рак р-ля

∆Tк -повышение температуры кипения

∆Tк=Е*Сm (E - эбулиоскопическая постоянная)

Физический смысл величины Е:

Эбуллиоскопическая постоянная характеризует то повышение t кипения, которое наблюдалось бы, если С

Если Сm=1 моль/кг*H2O, то Е=∆Tк

Величина Е зависит только от природы растворителя и не зависит от природы реагирующего вещества

Ен2о=0,51 градус*кг/моль

При расчете Tк температуры берутся в ºС!!!

3) температура замерзания раствора – это t, при которой давление насыщенного пара растворителя над раствором становится равным давлению насыщенного пара надо льдом.

MN характеризует изменение давления насыщенного пара надо льдом с t.

Выводы:

1) все растворы замерзают при t более низкой, чем чистый растворитель.

2) понижение t замерзания прямо-пропорционально раствора.

∆Tзз р-ля - Тз р-ра (∆Т=0)

∆Tз = К*Сm

К – кристаллоскопическая постоянная

Если Сm=1 моль/кг*H2O, то К= Tз

Кн2о=1,86 градус*кг/моль

Практическое использование свойств растворов замерзать при более низкой t:

1) для приготовления охлаждающих смесей

2) в обмен с гололедицей дорогу, лед, посыпают с солью.

3) криоскопический метод определения молярной массы растворенного вещества:

Берут навеску растворителя, охлаждают ее смесью льда с солью и определяют t замерзания по специальному термометру, который называют термометром Бекмана. После этого растворитель расплавляют и добавляют к нему навеску растворенного вещества и также определяют температуру замерзания. Затем рассчитывают

∆Tз= Тз р-ля - Тз р-ра

∆Tк=(К*mB*1000)/(MB*mA) и из этой формулы рассчитывают MB .

MB=(К*mB*1000)/(∆Tк*mA)

4) осмос и осмотическое давление

Рассмотрим устройство простейшего осмометра. В стакан с водой помещается осмометрическая ячейка, которая снизу закрыта полупроницаемой мембраной, чтобы уровень сахара и уровень воды был на одном уровне. Вода поднимается вверх и уровень поднимается

Осмос – это односторонняя самопроизвольная диффузия молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией.

Осмотическое давление равно гидростатическому давлению столбика жидкости высотой h, который надо приложить к раствору, чтобы задержать осмос.

Росм.М*R*T

СМ =1 моль/м3

моль/л * 1000 = моль/м3

Посм.-> Па (Н/м2)

Т->K

 

2.5

Определение величины, на которую повышается t кипения растворов, называется эбулиометрией.

Определение величины понижения t замерзания чистого растворителя и раствора, называется криометрией.

 

2.7,8

Закон Вант-Гоффа: осмотическое давление (Росм) прямо пропорционально молярной концентрации (с) и абсолютной температуре раствора (Т):

Росм.М*R*T

Растворы, имеющие одинаковое осмотическое давление, называют изотоническими.

Если два раствора имеют разное осмотическое давление, то раствор с большим осмотическим давлением является гипертоническим по отношению ко второму, а второй – гипотоническим по отношению к первому.

 

2.9

У растворов электролитов величины всех коллигативных свойств больше, чем у неэлектролитов.

Коллигативные свойства растворов электролитов:

1) изотонический коэффициент (i) – величина, показывающая во сколько раз свойство раствора электролита больше свойства раствора неэлектролита той же концентрации:

i = c*R*Tэл./ c*R*Tнеэл.=∆Тзам.эл./∆Тзам.неэл.= ∆Ткип.эл./∆Ткип.неэл.

Значение i зависит от степени диссоциации (α) данного электролита и числа ионов (v), образующихся при диссоциации одной молекулы:

i = 1 + α (v – 1)

2) активностью (а) называют такую величину, подстановка которой вместо концентрации в уравнения, действительные для идеальных систем, делает их применимыми к растворам сильных электролитов. Ее можно представить как произведение концентрации (с) на некоторый переменный фактор (f), называемый коэффициентом активности. т.е. а = f*c

Коэффициент активности, включающий поправку на силы взаимодействия, связан с ионной силой раствора (μ) следующим соотношением: lg f = -0,5Z*корень квадратный из μ.

где Z – заряд иона.

3) ионная сила раствора электролита равна полусумме произведений концентраций (с) каждого из присутствующих в растворе ионов на квадрат их заряда, т.е.

μ=1/2∑C1Z12=1/2(C1Z12+ C2Z22+…+ CnZn2)

4) константа диссоциации

В растворах слабых электролитов наряду с ионами имеются недиссоциированные молекулы, т.е. наблюдается равновесие: НА↔Н+-

Характеристикой силы электролита является константа диссоциации: Кдисс.=[H+][А-]/[HA]

Связь константы диссоциации с концентрацией электролита и степенью диссоциации была установлена Оствальдом. Закон разбавления Оствальда: Кдисс.= cα2/(1-α)

Для слабых электролитов очень мала и ее значением можно пренебречь.

Тогда: Кдисс.2c

 

2.10,11,12

Диффузия – самопроизвольный процесс выравнивания вещества в растворе.

С точки зрения термодинамики причиной диффузии является перемещение вещества от более высокого химического потенциала к низкому: μ(с1)> μ(с2), при с1>c2

Диффузия прекращается, когда концентрация во всех точках раствор становится одинаковой. При этом химический потенциал в разных точках системы становится одинаковым.

Скорость диффузии вещества зависит от массы и формы ее молекул, а также от разности концентраций этого вещества в различных слоях.

В 1855 Фик, изучая диффузные процессы установил закон: скорость диффузии вещества пропорциональна площади поверхности, через которую переносится вещество, и градиенту концентрации этого вещества.

∆n/∆t= -D*S*∆c/∆x

∆n/∆t - скорость диффузии, моль/c

S - площадь поверхности, м2

∆c/∆x - градиент концентрации, моль/м2

D - коэффициент пропорциональности или коэффициент диффузии вещества, м2/c

Эйнштейн и независимо от него Смолуховский вывели следующее уравнение для коэффициента диффузии: D=(RT/NA)*(1/6πηr)

R - универсальная газовая постоянная, раная 8,31 Дж/(моль К)

T - абсолютная температура, К

NA - постоянная Авогадро, равная 6,02*1023 1/моль

r - радиус диффундирующих частиц, м

D - коэффициент диффузии, м2/c

η - вязкость среды, Н*с/м2

 

2.14,15

Белки́ (протеины, полипептиды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот.

Различают белки:

1) простой белок рассматривают как продукт поликонденсации аминокислот, т.е. как специфический природный полимер

2) сложные белки состоят из простого белка и небелковых компонентов – углеводов, нуклеиновых кислот, липидов и других соединений.

Значение рН, при котором белок находится в изоэлектрическом состоянии, т.е. в состоянии, при котором число разноименных зарядов в белковой частице одинаково и ее общий заряд равен нулю, называется изоэлектрической точкой данного белка.

 

2.17

Высаливание – это явление выделения в осадок растворенного ВМС под действием большой концентрации электролита.

По своему высаливающему действию все катионы и анионы можно расположить в лиотропные ряды:

 

 

Расположение ионов в лиотропных рядах связано не с величиной их заряда, как в случае обычной коагуляции, а со степенью их гидратации. Чем больше ион способен связывать растворитель, тем больше его высаливающее действие. Основная роль в высаливании, как и в набухании, принадлежит анионам, катионы же оказывают меньшее воздействие на высаливание.

 

2.13,16,18,19,20,21

Свойства полимеров существенно изменяются при добавлении низкомолекулярных соединений. Например, если целлофановую пленку, состоящую из целлюлозы, смочить глицерином, небольшие молекулы глицерина проникают в пространство между молекулами целлюлозы и образуют подобие смазки. При этом ослабляются межмолекулярные связи, и пленка становится более пластичной.

Пластификация полимера - Повышение пластичности полимера при небольшом количестве НМС называется.

Набухание и растворение ВМС. При контакте полимера (ВМС) и растворителя (НМС) происходит набухание, и затем растворение полимера.

1)Набухание - проникновение растворителя в полимерное вещество, сопровождаемое увеличением объема и массы образца. Количественно набухание измеряется степенью набухания:

Степень набухания зависит от жесткости полимерных цепей. У жестких полимеров с большим числом поперечных связей (сшивок) между цепями степень набухания невелика. Так, например, эбониты — сильно вулканизированные резины — практически не набухают в бензоле. Каучуки (резины) ограниченно набухают в бензине. Желатин в холодной воде также характеризуется ограниченным набуханием. Добавление горячей воды к желатину или бензола к натуральному каучуку приводит к неограниченному набуханию этих полимеров.

Влияние различных факторов на степень набухания:

1) Степень набухания полимера зависит от его природы и природы растворителя. Полимер набухает лучше в растворителе, молекулярные взаимодействия которого с макромолекулами велики. Полярные полимеры набухают в полярных жидкостях (белок в воде), неполярные — в неполярных (каучук в бензоле). Ограниченное набухание аналогично ограниченной растворимости. В результате образуются студни (ограниченно набухший полимер).

2) Кроме природы растворителя на набухание ВМС влияют присутствие электролитов

3) рН среды

4) температура.

2) Процесс перехода золя или раствора полимера в студень называется желатинированием или застудневанием.

Факторы, влияющие на это процесс:

1) концентрация (повышение концентрации ускоряет процесс желатинирования)

2) природа веществ (не все гидрофобные золи могут переходить в гели, например, золи благородных металлов: золота, серебра, платины – не способны застудневать, что объясняется своеобразным строением и низкой концентрацией их золей)

3) температура (низкие температуры способствуют застудневанию. Понижение температуры ускоряет агрегацию частиц и понижает растворимость вещества)

4) время процесса (процесс застудневания даже при низкой температуре требует продолжительного времени (от минут до недель) для формирования ячеистой объемной сетки. Время, необходимое для ее образования, называется периодом созревания)

5) форма частиц (особенно хорошо протекают процессы желатинирования в золях, состоящих из палочковидных или лентообразных по форме частиц)

6) электролиты (различно влияют на скорость желатинирования)

7) реакция среды (желатинирование происходит быстрее, когда молекулы белка не имеют электрического заряда и менее гидратированы, т.е. находятся в изоэлектрическом состоянии)

Способность многих гелей под влиянием механических воздействий разжижаться, переходить в золи, а затем в состояние покоя вновь застудневать получила название тиксотропии.

3) Высалиыание ВМС - выделение ВМС из раствора при введении ионов или неэлектролитов.

Наименьший высаливающий эффект будут проявлять мягкие основания-анионы I- и NCS- - слабо гидратирующиеся и хорошо адсорбирующиеся на молекулах ВМС.

Снижение устойчивости раствора ВМС наблюдается при уменьшении лиофильности полимера. Лиофильность может быть понижена не только добавлением хорошо гидратируемых ионов, но и добавлением к водному раствору ВМС растворителя, в котором полимер хуже растворим, чем в воде. Например, этанол оказывает высаливающий эффект на желатин, растворенный в воде.

4) Коацервация - при нарушении устойчивости раствора ВМС возможно образование коацервата — новой жидкой фазы, обогащенной полимером. Коацерват может находиться в исходном растворе в виде капель или образовать сплошной слой (расслаивание);

Коацервация происходит при изменении температуры или состава раствора и обусловлена понижением взаимной растворимости компонентов раствора. Наиболее изучена коацервация белков и полисахаридов в водных растворах. Согласно одной из теорий происхождения жизни на Земле (А.И.Опарин) коацерваты являются зародышами древних форм жизни.

Использование: при микрокапсулировании лекарств. Для этого лекарственное вещество диспергируют в растворе полимера, а затем, изменяя температуру или рН среды, испаряя часть растворителя или вводя высаливатель, выделяют из раствора фазу, обогащенную полимером. Мелкие капли этой фазы отлагаются на поверхности капсул дисперигируемых частиц, образуя сплошную оболочку. Микрокапсулирование лекарств обеспечивает устойчивость, пролонгирует действие, маскирует неприятный вкус лекарств.

 

2.24,25,26,27

Вязкость – мера сопротивления среды движению. Эту величину характеризуют коэффициентом вязкости.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: