В математической статистике доказано и подтверждено многочисленными экспериментами, что для многих случайных процессов теоретическая частость подчиняется закону нормального распределения и определяется следующим выражением
. (13.13)
В нем функция

называется плотностью вероятности непрерывной случайной величины или дифференциальной функцией нормального распределения. График этой функции в виде холмообразной кривой приведен на рис. 13.2. Этот график называется дифференциальной кривой нормального распределения или просто кривой нормального распределения. Запись
означает, что плотность вероятности является функцией от непрерывной случайной величины
и двух параметров распределения:
- среднего арифметического значения и
- среднего квадратического отклонения. Плотность вероятности следует рассматривать, как вероятность появления случайной величины
на бесконечно малом отрезке в области ее определения, т.е. в точке. Там где
, вероятность появления случайной величины максимальная. С увеличением разности
эта вероятность уменьшается.
Чтобы определить саму вероятность появления случайной величины
в некотором интервале
, необходимо вычислить интеграл от плотности вероятности
,
. (13.14)
Это выражение называется интегральной функцией нормального распределения или интегралом вероятности. В геометрическом смысле этот интеграл представляет собой площадь под кривой нормального распределения в пределах заданного интервала. Для достаточно узкого интервала согласно теореме о среднем
;
. (13.15)
Плотность вероятности имеет следующие свойства:
1. Ось
является асимптотой для ветвей ее графика.
2. При
плотность вероятности имеет максимальное значение
. (13.16)
3. График функции имеет две точки перегиба
и
, которые находятся на расстоянии
от оси симметрии (рис.13.2). Ординаты их равны
. (13.17)
4. Если случайная величина может принимать любые численные значения в интервале
, то независимо от
и 
. (13.18)
Это свойство вытекает из положения, что вероятность появления случайной величины на бесконечно большом интервале равна единице.
Положение кривой относительно начала координат, и ее форма определяются двумя параметрами
и
. С изменением
форма кривой остается прежней. Изменяется ее положение относительно начала координат (рис. 13.3). С изменением
центр кривой остается на прежнем месте. Изменяется ее форма (рис.13.4). С увеличением
кривая растягивается и уменьшается по высоте. Таким образом, как это уже было отмечено ранее,
является мерой рассеяния случайной величины.






