double arrow

Параметры состояния системы

I. Основные понятия термодинамики

Тема: Термодинамика химического равновесия.

Цель лекции: изучение вопросов по термодинамике химического равновесия

План:

  1. Основные понятия термодинамики. Интенсивные и экстенсивные параметры. Функции состояния. Внутренняя энергия. Работа и теплота – две формы передачи энергии. Типы термодинамических систем (изолированные, закрытые, открытые). Типы термодинамических процессов (изотермические, изобарные, изохорные). Стандартное состояние.
  2. Первое начало термодинамики. Энтальпия. Стандартная энтальпия образования веществ. Закон Гесса. Применение первого начала термодинамики к биосистемам.
  3. Второе начало термодинамики. Обратимые и необратимые в термодинамическом смысле процессы. Энтропия. Энергия Гиббса. Прогнозирование направления самовольно протекающих процессов в изолированной и закрытых системах; роль энтальпийного и энтропийного факторов.
  4. Химическое равновесие. Обратимые и необратимые по направлению реакции. Термодинамические условия равновесия в изолированных и закрытых системах. Прогнозирование смещения химического равновесия. Понятие о буферном действии, гомеостазе и стационарном состоянии живого организма.

Содержание лекции:

Химическая термодинамика – это раздел физической химии, изучающий взаимопревращение теплоты и энергии при протекании химической реакции.

Термодинамика основана на ряде понятий: система, состояние системы, параметры состояния системы, функции состояния системы, внутренняя энергия системы и т. д.

Термодинамическая система – это тело или группа тел, взаимодействующих между собой, и отделённых от окружающей среды реальной или воображаемой поверхностью раздела.

Изолированная система – это система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – это система, которая не обменивается со средой веществом, но обменивается энергией.

Открытая система – это система, которая обменивается со средой и веществом, и энергией.

Примером открытой системы является живая клетка.

Состояние системы – это набор свойств системы, позволяющих описать систему с точки зрения термодинамики.

Например, для оценки состояния человеческого организма, как термодинамической системы, врач должен оценить некоторые его свойства (температура, давление, концентрация биологических жидкостей).

Физические свойства, характеризующие состояние системы, называют параметрами состояния системы.

Взаимодействие системы с окружающей средой заметно по изменению параметров системы.

Экстенсивные параметры – это параметры, которые зависят от количества вещества системы и суммируются при объединении систем (объём, масса, энергия, площадь и т.д.).

Интенсивные параметры – это параметры, которые не зависят от количества вещества и выравниваются при объединении систем (температура, давление, концентрация, плотность, поверхностное натяжение).

Параметры состояния связаны уравнением состояния.

Переход системы из одного состояния в другое с изменением хотя бы одного параметра называется термодинамическим процессом.

Если процесс идет при постоянном давлении, он называется изобарным процессом. При постоянном объёме - изохорным, при постоянной температуре - изотермическим.

Функция состояния - это характеристика системы, которая не поддается прямому измерению, а рассчитывается через параметры состояния. Значение функции состояния не зависит от способа его достижения, а только от начального и конечного состояния системы.

Внутренняя энергия является одной из таких функций.

Внутренняя энергия - сумма всех видов энергий движения и взаимодействия частиц, составляющих систему.

В XIX веке немецкий судовой врач Майер Ю.Р. и английский ученый Джоуль Д. показали, что теплота и работа способны к взаимопревращениям, являясь разными способами передачи энергии.

Теплота - форма передачи энергии путем хаотического движения микрочастиц.

Работа - форма передачи энергии путём направленного движения макросистемы как целого.

Наблюдая за людьми в разных климатических зонах, Майер сделал вывод, что теплота сгорания пищи используется на поддержание постоянной температуры тела и на выполнение мускульной работы. Это наблюдение легло в основу 1 закона термодинамики.


Сейчас читают про: