Роль ядра в жизни клетки и его значение в переносе информацииот ДНК к белку

Синтез белка: ДНК РНК белок.

 

Главную роль в определении структуры белков принадлежит ДНК. ДНК имеет ограниченную локализацию в клетке, а именно местом ее нахождения в эу клетках служит ядро. У пр организмов, которые не имеют оформленного ядра, ДНК также отделена от остальной части протоплазмы в виде нескольких компактных нуклеоидных образований.

Молекула ДНК – длинная линейная структура, состоящая из двух антипараллельно закрученных цепей, основными мономерами является 4 вида дезоксирибонуклеотидов. Чередование и последовательность этих дезоксирибонуклеотидов в цепи уникальна и специфична для каждого участка молекулы ДНК и для каждого вида. Различные достаточно длинные участки молекулы ДНК ответственны за синтез разных белков, поэтому одна молекулы ДНК может определить синтез большого числа функционально и химически различных белков.

В уникальной последовательности структуры гена заключена вся необходимая информация о структуре белка. Основной принцип, который лежит в основе структуры ДНК – это принцип комплементарности. Комплементарными являются пары нуклеотидов А-Т; Г-Ц, соединенные водородными связями.

Сама по себе молекулы ДНК не является самовоспроизводящейся молекулой. Для осуществления процесса репликации необходима деятельность специального фермента - ДНК-полимеразы. Этот фермент осуществляет последовательно идущий от одного конца молекулы ДНК к другому концу процесс расхождения двух цепей с одновременной полимеризацией на них свободных нуклеотидов по комплементарному принципу. Одна из цепей молекулы ДНК служит матрицей, т.е. создает порядок расположения нуклеотидов в синтезирующихся цепях.

Первым этапом является процесс транскрипции. В этом процессе на цепи ДНК как на матрице происходит синтез химически родственного полимера РНК. Молекула РНК представляет из себя одну цепь, мономерами которой являются четыре сорта рибонуклеотидов, которые являются небольшой модификацией молекул дезоксирибонуклеотидов. Последовательность расположение нуклеотидов в молекуле РНК в точности повторяет расположение соответствующих дезоксирибонуклеотидов одной из цепей ДНК. Поэтому информация, записанная в структуре гена целиком переписывается на информационную РНК.

 

Рибосомы являются местом реализации трансляции, т.е. перевода нуклеотидной последовательность информации в аминокислотную последовательность молекулы белка.

 

Ядро, являющееся местом хранения этой информации, очень сложным образом разделяет эти два явления. Процессы транскрипции отделяются от процессов трансляции отделяются различными местами протекания этого всего. Поэтому поверхностный аппарат ядра не просто определяет форму ядра, а разделяет два главных биологических процесса.

 

Функции ядра: хранение генетической информации и обеспечение синтеза белка, образование субъединиц рибосом.

 

У прокариот молекулы ДНК замкнутые, циклические, кольцевые.

Отличительной чертой ядерных структур прокариот является то, что синтез РНК и синтез белка может происходить одновременно. Рибосомы связываются с еще не до конца синтезированными молекулами иРНК и начинают производить на них синтез белка. Тройственный союз (ДНК; РНК; рибосомы). У прокариотов процессы транскрипции и трансляции не разобщены территориально.

Отличается процесс проведения ядерного материала не только при делении клетки, но и в течение всего клеточного цикла. Деление всех типов клеток происходит только после удвоения ДНК. У бактерий часто сам процесс разделения тела клетки цитотомия не связан с окончанием синтеза ДНК, т.к. до наступления клеточного деления может начаться второй и даже третий цикл репликации ДНК. В результате такого синтеза ДНК в быстрорастущих культурах микроорганизмов на каждую разделившуюся клетку приходится 1 кольцевая молекула ДНК на промежуточных стадиях ее дальнейшего удвоения. Т.е. каждая дочерняя клетка сразу после деления содержит уже частично реплицированное ядро. При делении бактериальных клеток не происходит конденсации ДНК в составе нуклеоида.

По мере роста клетки в длину зона нуклеоида после синтеза белка увеличивается, а затем делится с помощью специального механизма, который предполагает обособление и разделение дочерних хромосом за счет расхождения мест их укрепления в плазмолемме.

               

Основные элементы структуры интерфазного ядра: совокупность интерфазных хромосом (хроматин или ДНП интерфазного ядра), поверхностный аппарат ядра, ядерный сок (кариоплазма) и ядрышко.

Основные элементы ядра:

1) Поверхностный аппарат ядра. Выполняет наисложнейшую барьерно-рецепторную, транспортную и каркасную функции.

2) Хроматин – главный компонент ядра, в котором заложена генетическая информация.

3) Ядрышко – это хромосомный участок, место синтеза рибосомальных генов и образования субчастиц рибосом.

4) Ядерный белковый матрикс – это не хроматиновый остов, который обеспечивает не только пространственное расположение хромосом в ядре, но и участвует в реализации из активности.

5) Кариоплазма (ядреный сок) – это жидкая фаза клеточного ядра, в которой протекают процессы, связанные с ядреным метаболизмом и внутриядерным транспортом РНК и белков.

Ядро было открыто Брауном в 1833 году. Под ним понимали любые шаровидные структуры в клетках растений. На сегодня мы четко можем сформулировать особенности ядерного аппарата эукариотических клеток:

1) Ядро эукариот отделено от гиалоплазмы специальной структурой, которая называется поверхностный аппарат ядра (ядерная оболочка).

2) Количество ДНК в ядрах эукариот в тысячи раз больше, чем в составе нуклеоидов прокариотических клеток.

3) ДНК эукариот представляет собой сложный нуклеопротеидный комплекс, образующий специальную структуру с названием хроматин, из которого состоят хромосомы.

4) В состав ядер эукариот входит несколько физически не связанных хромосом, каждая из которых содержит одну линейную молекулу ДНК.

5) Каждая хромосомная ДНК представляет собой полирепликонную структуру, т.е. содержит множество автономно реплицирующихся участков.

6) Синтез и образование транскриптов эукариотических клеток сопровождается процессами вторичной их перестройки, включающей в себя как фрагментацию (процессинг), так и сращивание отдельных фрагментов (сплайсинг).

7) Процессы синтеза ДНК и РНК разобщены от процессов синтеза белка.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: